manuscripta mathematica

, Volume 124, Issue 2, pp 139–172

The Green function estimates for strongly elliptic systems of second order



We establish existence and pointwise estimates of fundamental solutions and Green’s matrices for divergence form, second order strongly elliptic systems in a domain \(\Omega \subseteq {\mathbb{R}}^n, n \geq 3\) , under the assumption that solutions of the system satisfy De Giorgi-Nash type local Hölder continuity estimates. In particular, our results apply to perturbations of diagonal systems, and thus especially to complex perturbations of a single real equation.

Mathematics Subject Classification (2000)

Primary 35A08 35B45 Secondary 35J45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfonseca, A., Auscher, P., Axelsson, A., Hofmann, S., Kim, S.: Analyticity of layer potentials and L 2 Solvability of boundary value problems for divergence form elliptic equations with complex \(L^{\infty}\) coefficients, preprintGoogle Scholar
  2. 2.
    Auscher P. (1996). Regularity theorems and heat kernel for elliptic operators. J. London Math. Soc. 54(2): 284–296MATHGoogle Scholar
  3. 3.
    Auscher, P., Tchamitchian, Ph.: Square root problem for divergence operators and related topics. Astérisque No. 249 (1998)Google Scholar
  4. 4.
    Campanato S. (1965). Equazioni ellittiche del IIº ordine espazi \({\mathcal{L}}^{(2,\lambda)}\) . (Italian) Ann. Mat. Pura Appl. 69(4): 321–381 MATHCrossRefGoogle Scholar
  5. 5.
    De Giorgi E. (1957). Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. (Italian) Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3(3): 25–43Google Scholar
  6. 6.
    Dolzmann G. and Müller S. (1995). Estimates for Green’s matrices of elliptic systems by L p theory. Manuscripta Math. 88(2): 261–273MATHCrossRefGoogle Scholar
  7. 7.
    Fuchs M. (1986). The Green matrix for strongly elliptic systems of second order with continuous coefficients. Z. Anal. Anwendungen 5(6): 507–531MATHGoogle Scholar
  8. 8.
    Giaquinta M. (1983). Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press, PrincetonMATHGoogle Scholar
  9. 9.
    Giaquinta M. (1993). Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag, BaselMATHGoogle Scholar
  10. 10.
    Gilbarg D. and Trudinger N.S. (2001). Elliptic partial differential equations of second order. Reprint of the 1998 ed. Springer, BerlinMATHGoogle Scholar
  11. 11.
    Grüter M. and Widman K.-O. (1982). The Green function for uniformly elliptic equations. Manuscripta Math. 37(3): 303–342MATHCrossRefGoogle Scholar
  12. 12.
    Hofmann S. and Kim S. (2004). Gaussian estimates for fundamental solutions to certain parabolic systems. Publ. Mat. 48: 481–496MATHGoogle Scholar
  13. 13.
    John F. and Nirenberg L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14: 415–426MATHCrossRefGoogle Scholar
  14. 14.
    Littman W., Stampacchia G. and Weinberger H.F. (1963). Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17(3): 43–77MATHGoogle Scholar
  15. 15.
    Malý J. and Ziemer W.P. (1997). Fine regularity of solutions of elliptic partial differential equations. American Mathematical Society, ProvidenceMATHGoogle Scholar
  16. 16.
    Meyers N.G. (1963). An L p-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17(3): 189–206MATHGoogle Scholar
  17. 17.
    Morrey C.B. Jr. (1966). Multiple integrals in the calculus of variations. Springer, New YorkMATHGoogle Scholar
  18. 18.
    Moser J. (1961). On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14: 577–591MATHCrossRefGoogle Scholar
  19. 19.
    Sarason D. (1975). Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207: 391–405MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of MissouriColumbiaUSA
  2. 2.Centre for Mathematics and its ApplicationsThe Australian National UniversityCanberraAustralia

Personalised recommendations