Advertisement

manuscripta mathematica

, Volume 123, Issue 1, pp 53–71 | Cite as

Naturality of Abel maps

  • Lucia CaporasoEmail author
Article

Abstract

We give a combinatorial characterization of nodal curves admitting a natural (i.e. compatible with and independent of specialization) dth Abel map for any d ≥ 1.

Mathematics Subject Classification (2000)

14H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman A. and Kleiman S. (1980). Compactifying the Picard scheme. Adv. Math. 35: 50–112 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Artin, M.: Néron models. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic Geometry. Proc. Storrs. Springer, Berlin (1986)Google Scholar
  3. 3.
    Bosch, S., Lüktebohmert, W., Raynaud, M.: Néron models. In: Ergebnisse der Mathematik, vol. 21. Springer, BerlinGoogle Scholar
  4. 4.
    Caporaso, L.: Néron models and compactified Picard schemes over the moduli stack of stable curves. Am. J. Math. (to appear) math.AG/0502171Google Scholar
  5. 5.
    Caporaso, L., Esteves, E.: On Abel maps of stable curves. Michigan J. Math. (to appear) math.AG/0603476Google Scholar
  6. 6.
    Coelho, J.: On Abel maps for reducible curves. PhD Thesis IMPA (2006)Google Scholar
  7. 7.
    Edixhoven B. (1998). On Néron models divisors and modular curves. J. Ramanujan Math. Soc. 13(2): 157–194 zbMATHMathSciNetGoogle Scholar
  8. 8.
    Esteves E., Gagné M. and Kleiman S. (2000). Abel maps and presentation schemes. Comm. Algebra 28(12): 5961–5992 zbMATHMathSciNetGoogle Scholar
  9. 9.
    Esteves E. (2001). Compactifying the relative Jacobian over families of reduced curves. Trans. Am. Math. Soc. 353(8): 3045–3095 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Esteves E. and Medeiros N. (2002). Limit canonical systems on curves with two components. Invent. Math. 149(2): 267–338 zbMATHMathSciNetGoogle Scholar
  11. 11.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory (1st edition 1965), 3rd edition E.M.G. 34. Springer, Berlin (1994)Google Scholar
  12. 12.
    Raynaud M. (1970). Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. 38: 27–76 zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità Roma TreRomaItaly

Personalised recommendations