manuscripta mathematica

, Volume 123, Issue 1, pp 37–51 | Cite as

Fano 3-folds with divisible anticanonical class

  • Gavin Brown
  • Kaori Suzuki


We show the nonvanishing of H 0(X,−K X ) for any a Fano 3-fold X for which −K X is a multiple of another Weil divisor in Cl(X). The main case we study is Fano 3-folds with Fano index 2: that is, 3-folds X with rank Pic(X)=1, \({\mathbb{Q}}\) -factorial terminal singularities and −K X  = 2A for an ample Weil divisor A. We give a first classification of all possible Hilbert series of such polarised varieties (X,A) and deduce both the nonvanishing of H 0(X,−K X ) and the sharp bound (−K X )3≥ 8/165. We find the families that can be realised in codimension up to 4.

Mathematics Subject Classification (2000)

Primary 14J30 Secondary 14E30 14Q15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altınok S., Brown G. and Reid M. (2002). Fano 3-folds, K3 surfaces and graded rings. Topology and geometry: commemorating SISTAG. Contemp. Math. 314: 25–53 Google Scholar
  2. 2.
    Brown, G.: Graded rings and special K3 surfaces. In: Bosma, W., Cannon J. (eds.) Discovering Mathematics with Magma. Algorithms and Computation in Mathematics, vol. 19, pp. 137–159 (2006)Google Scholar
  3. 3.
    Brown, G.: A database of polarised K3 surfaces. Exp. Math. 28 pp (2007, to appear)Google Scholar
  4. 4.
    Brown, G., Suzuki, K.: Computing Fano 3-folds of index ≥3. Jpn. J. Indust. Appl. Math. p. 11 (2007, to appear)Google Scholar
  5. 5.
    Brown, G., Suzuki, K.: Lists of examples and Magma code available for download at Scholar
  6. 6.
    Brown, G., Kerber, M., Reid, M.: K3 surfaces and Fano 3-folds, Tom and Jerry, in progressGoogle Scholar
  7. 7.
    Bosma W., Cannon J. and Playoust C. (1997). The Magma algebra system I: the user language. J. Symb. Comp. 24: 235–265 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Iano-Fletcher, A.R.: Working with weighted complete intersections. In: Corti, A., Reid, M. (eds.) Explicit Birational Geometry of 3-folds LMS Lecture Note Ser. 281, pp. 101–173, CUP (2000)Google Scholar
  9. 9.
    Iskovskikh, V.A., Prokhorov, Yu.G.: Fano Varieties, Algebraic geometry V, Encyclopaedia of Mathematical Sciences, vol 47, pp. iv+247. Springer, Berlin (1999)Google Scholar
  10. 10.
    Kawamata Y. (1986). On the plurigenera of minimal algebraic 3-folds with K≡ 0. Math. Ann. 275(4): 539–546 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kawamata Y. (1992). Boundedness of \({\mathbb{Q}}\) –Fano threefoldsContemp. Math. 131: 439–445 MathSciNetGoogle Scholar
  12. 12.
    Mori S. (1985). On 3-dimensional terminal singularities.. Nagoya Math. J. 98: 43–66 MATHMathSciNetGoogle Scholar
  13. 13.
    Reid, M.: Young person’s guide to canonical singularities. In: Bloch, S. (ed.) Algebraic Geometry (Bowdoin 1985). Proceedings of Symposia in Pure Math., vol. 46, A.M.S. vol. 1, pp. 345–414 (1987)Google Scholar
  14. 14.
    Reid, M.: Graded rings and birational geometry. In: Ohno, K. (ed.) Proceedings of algebraic geometry symposium (Kinosaki), pp. 1–72 (2000)Google Scholar
  15. 15.
    Reid, M., Suzuki, K.: Cascades of projections from log del Pezzo surfaces. In: Number Theory and Algebraic Geometry, LMS Lecture Note Ser. 303, 227–249 CUP (2003)Google Scholar
  16. 16.
    Suzuki K. (2004). On Fano indices of \({\mathbb{Q}}\) -Fano 3-foldsManuscripta Math. 114(2): 229–246 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.IMSASUniversity of KentCanterburyUK
  2. 2.Tokyo Institute of TechnologyMeguro-kuJapan

Personalised recommendations