Advertisement

manuscripta mathematica

, Volume 120, Issue 2, pp 151–162 | Cite as

Cohomology of the Grothendieck construction

  • Teimuraz PirashviliEmail author
  • Marí a Julia Redondo
Article

Abstract

We consider cohomology of small categories with coefficients in a natural system in the sense of Baues and Wirsching. For any functor L : KCAT, we construct a spectral sequence abutting to the cohomology of the Grothendieck construction of L in terms of the cohomology of K and of L(k), for k ∈ ObK.

Keywords

Natural System Spectral Sequence Initial Object Small Category Contravariant Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baues, H.J., Wirsching, G.: Cohomology of small categories. J. Pure Appl. Algebra 38 (2–3), 187–211 (1985)Google Scholar
  2. 2.
    Cibils, C., Marcos, E.: Skew categories, Galois coverings and smash product of a k-category. Proc. Amer. Math. Soc. 134 (1), 39–50 (2006)Google Scholar
  3. 3.
    Cibils, C., Redondo, M.J.: Cartan–Leray spectral sequence for Galois coverings of linear categories. J. Algebra. 284, 310–325 (2005)Google Scholar
  4. 4.
    Dold, A., Puppe, D.: Homologie nicht-additiver Funktoren. Anwendungen. Ann. Inst. Fourier Grenoble 11, 201–312 (1961)Google Scholar
  5. 5.
    Franjou, V., Friedlander, E.M., Pirashvili, T., Schwartz, L.: Rational Representations, the Steenrod Algebra and Functor Homology. Panoramas et Synthèses, vol. 16, Soc. Math. France, Paris, pp. xxii+132 (2003)Google Scholar
  6. 6.
    Muro, F.: On the functoriality of cohomology of categories. arXiv math. CT/ 0411478Google Scholar
  7. 7.
    Pirashvili, T.: Category of Eilenberg-Mac Lane fibrations and cohomology of Grothendieck constructions. Comm. Algebra 21 (1), 309–341 (1993)Google Scholar
  8. 8.
    Quillen, D.: Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories In: Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972. Lecture Notes in Math., Vol. 341, Berlin: Springer, 1973, pp. 85–147Google Scholar
  9. 9.
    Revêtements étales et groupe fondamental. Séminaire de Géomètrie Algébrique du Bois Marie 1960–1961 (SGA 1). Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. Lecture Notes in Mathematics, Vol. 224. Berlin-New York: Springer-Verlag, pp. xxii+447 (1971)Google Scholar
  10. 10.
    Thomason, R.W.: Homotopy colimits in the category of small categories. Math. Proc. Cambridge Philos. Soc. 85 (1), 91–109 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Razmadze Mathematical Institute of Georgian Academy of SciencesTbilisiRepublic of Georgia
  2. 2.Instituto de MatemáticaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations