Advertisement

manuscripta mathematica

, Volume 120, Issue 1, pp 39–52 | Cite as

Isolatedness of the minimal representation and minimal decay of exceptional groups

  • Hadi SalmasianEmail author
Article

Abstract

Using a new definition of rank for representations of semisimple groups sharp results are proved for the decay of matrix coefficients of unitary representations of two types of non-split p-adic simple algebraic groups of exceptional type. These sharp bounds are achieved by minimal representations. It is also shown that in one of the cases considered, the minimal representation is isolated in the unitary dual.

Mathematics Subject Classification (2000)

22E46 22E50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. unpublished lecture notes (1995)Google Scholar
  2. 2.
    Cowling, M.: Sur les coefficients des represéntations unitaires des groupes de Lie simples. In: Analyse harmonique sur les groupes de Lie (Nancy-Strasbourg, France, 1976-78), II. Lecture Notes in Math., 739. Berlin: Springer, 1979, pp. 132–178Google Scholar
  3. 3.
    Gan, W.T., Savin, G.: On minimal representations. Representation Theory 9, 46–93 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gan, W.T., Savin, G.: Uniqueness of Joseph ideal. Math Res. Lett. 11 (5–6), 589–598 (2004)Google Scholar
  5. 5.
    Garfinkle, D.: A new construction of the Joseph ideal. PhD Thesis, MIT.Google Scholar
  6. 6.
    Graham, W., Vogan, D.: Geometric quantization for nilpotent coadjoint orbits. In: Geometry and representation theory of real and p-adic groups, Progress in Math. 158. Boston, MA: Birkhauser Boston, 1998, pp. 69–137Google Scholar
  7. 7.
    Howe, R.: On a notion of rank for unitary representations of the classical groups. In: Harmonic analysis and group representations. Naples: Liguori, 1982, pp. 223–331Google Scholar
  8. 8.
    Howe, R.: On the role of the Heisenberg group in harmonic analysis. Bull. Amer. Math. Soc. (N.S.)3, no. 2, 821–843 (1980)Google Scholar
  9. 9.
    Howe, R.: Hecke algebras and p-adic GLn. In: Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), 65–100, Contemp. Math. 177. Providence, RI: Amer. Math. Soc., 1994, 65–100Google Scholar
  10. 10.
    Howe, R., Moore, C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32 (1), 72–96 (1979)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Joseph, A. The minimal orbit in a simple Lie algebra and its associated maximal ideal. Ann. Sci. cole Norm. Sup. (4) 9 (1), 1–29 (1976)Google Scholar
  12. 12.
    Li, J.-S.: The minimal decay of matrix coefficients for classical groups. In: Harmonic analysis in China, Math. Appl. 327. Dordrecht: Kluwer Acad. Publ., 1995, pp. 146–169Google Scholar
  13. 13.
    Li, J.S., Zhu, C.B.: On the decay of matrix coefficients for exceptional groups. Math. Ann. 305 (2), 249–270 (1996)CrossRefGoogle Scholar
  14. 14.
    Loke, H.Y., Savin, G.: Rank and matrix coefficients for simply laced groups. preprintGoogle Scholar
  15. 15.
    Mackey, G.W., The theory of unitary group representations. University of Chicago Press, 1976Google Scholar
  16. 16.
    Oh, H.: Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Math. J. 113 (1), 133–192 (2002)CrossRefGoogle Scholar
  17. 17.
    Poulsen, N.S.: On C -vectors and intertwining bilinear forms for representations of Lie groups. J. Func. Anal. 9, 87–120 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Sahi, S.: Explicit Hilbert spaces for certain unipotent representations. Invent. Math. 110 (2), 409–418 (1992)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Salmasian, H.: A new notion of rank for unitary representations based on Kirillov's orbit method. submitted, arXiv:math.RT/0504363Google Scholar
  20. 20.
    Silberger, A.J.: Introduction to Harmonic analysis on reductive p-adic groups. In: Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-73. Math. Notes 23. Princeton, N.J: Princeton Univ. Press, 1979Google Scholar
  21. 21.
    Tits, J.: Classification of algebraic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups. Proc. Sympos. Pure Math., Boulder, Colo., 1965. Providence, R.I.: Amer. Math. Soc. 1966, pp. 33–62Google Scholar
  22. 22.
    Taylor, M.E.: Noncommutative harmonic analysis. AMS Mathematical Surveys and Monographs, no. 22, Providence, R.I.: AMS, 1986Google Scholar
  23. 23.
    Torasso, P.: Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle (French). Duke Math. J. 90 (2), 261–377 (1997)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Wallach, N.R., Real Reductive Groups I. Pure and Applied Mathematics 132, Boston, MA: Academic Press, Inc., 1988Google Scholar
  25. 25.
    Weil, A.: Sur certains groupes d'opérateurs unitaires. Acta Math. 111, 143–211 (1964)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Weissman, M.H.: The Fourier-Jacobi map and small representations. Represent. Theory 7, 275–299 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsQueen's UniversityKingstonCanada

Personalised recommendations