manuscripta mathematica

, Volume 121, Issue 4, pp 425–435 | Cite as

Unirationality of certain supersingular K3 surfaces in characteristic 5

Article

Abstract

We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin M. (1962) Some numerical criteria for contractability of curves on algebraic surfaces. Am. J. Math. 84, 485–496MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Artin M. (1966) On isolated rational singularities of surfaces. Am. J. Math. 88, 129–136MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Artin M. (1975) Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. 7(4): 543–567MathSciNetGoogle Scholar
  4. 4.
    Artin M. Coverings of the rational double points in characteristic p. In: Complex Analysis and Algebraic Geometry, pp.11–22 Iwanami Shoten, Tokyo, (1977)Google Scholar
  5. 5.
    Conway J.H., Sloane N.J.A. Sphere packings, lattices and groups, 3rd edn. In: Grundlehren der Mathematischen Wissenschaften, vol. 290. Springer, Berlin Heidelberg New York (1999)Google Scholar
  6. 6.
    Ebeling W. Lattices and codes, revised ed. In: Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (2002)Google Scholar
  7. 7.
    Edwards, H.M.: Fermat’s last theorem. In: Graduate Texts in Mathematics, vol. 50. Springer, Berlin Heidelberg New York (1996)Google Scholar
  8. 8.
    Greuel G.-M., Kröning H. (1990) Simple singularities in positive characteristic. Math. Z. 203, 339–354MATHMathSciNetGoogle Scholar
  9. 9.
    Illusie L. (1979) Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. 12(4): 501–661MATHMathSciNetGoogle Scholar
  10. 10.
    Namba, M.: Geometry of projective algebraic curves. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 88. Marcel Dekker, New York (1984)Google Scholar
  11. 11.
    Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43 111–177, 238 (1979). English translation: Math. USSR-Izv. 14, (1979) 103–167 (1980)Google Scholar
  12. 12.
    Nikulin, V.V.: Weil linear systems on singular K3 surfaces. In: Algebraic Geometry and Analytic Geometry (Tokyo, 1990), ICM-90 Satell. Conference Proceedings pp. 138–164 Springer, Tokyo (1991)Google Scholar
  13. 13.
    Ogus, A.: Supersingular K3 crystals. Journées de Géométrie Algébrique de Rennes (Rennes, 1978), vol. II, Astérisque, vol. 64, (Soc. Math. France, Paris, 1979), pp. 3–86Google Scholar
  14. 14.
    Ogus, A.: A crystalline Torelli theorem for supersingular K3 surfaces. In: Arithmetic and geometry, vol. II, Progr. Math., vol. 36, pp. 361–394 Birkhäuser, Boston, MA (1983)Google Scholar
  15. 15.
    Rudakov, A.N., Shafarevich, I.R.: Supersingular K3 surfaces over fields of characteristic 2. Izv. Akad. Nauk SSSR Ser. Mat. 42, 848–869 (1978). Reprinted In: Shafarevich I.R.: Collected Mathematical Papers, pp. 614–632. Springer, Berlin Heidelberg New York (1989)Google Scholar
  16. 16.
    Rudakov, A.N., Shafarevich, I.R.: Surfaces of type K3 over fields of finite characteristic. Current Problems in Mathematics, vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981. Reprinted In: Shafarevich, I.R.: Collected Mathematical Papers, pp. 657–714, 115–207. Springer, Berlin Heidelberg New York (1989)Google Scholar
  17. 17.
    Saint-Donat B. (1974) Projective models of K − 3 surfaces. Am. J. Math. 96, 602–639MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Serre, J.-P.: A course in arithmetic. Springer, Berlin Heidelberg New York (1973). Translated from the French, Graduate Texts in Mathematics, No. 7Google Scholar
  19. 19.
    Shimada, I.: Rational double points on supersingular K3 surfaces. Math. Comp. 73, 1989–2017 (2004) (electronic).Google Scholar
  20. 20.
    Shimada, I., Zhang, D.-Q.: K3 surfaces with ten cusps. Preprint. Available on: http//www.math.sci.hokudai.ac.jp/~shimada/preprints.htmlGoogle Scholar
  21. 21.
    Shimada, I., Zhang, D.-Q.: Dynkin diagrams of rank 20 on supersingular K3 surfaces. Preprint. Available on: http//www.math.sci.hokudai.ac.jp/~shimada/preprints.htmlGoogle Scholar
  22. 22.
    Shioda T. (1974) An example of unirational surfaces in characteristic p. Math. Ann. 211, 233–236MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Shioda T. (1977) On unirationality of supersingular surfaces. Math. Ann. 225, 155–159MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Shioda T. (1977) Some results on unirationality of algebraic surfaces. Math. Ann. 230, 153–168MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Urabe, T.: Combinations of rational singularities on plane sextic curves with the sum of Milnor numbers less than sixteen, Singularities (Warsaw, 1985), vol. 20 pp. 429–456 Banach Center Publ., PWN, Warsaw, (1988)Google Scholar
  26. 26.
    Wall C.T.C. (1995) Quartic curves in characteristic 2. Math. Proc. Cambridge Philos. Soc. 117, 393–414MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsVietnam National UniversityHanoiVietnam
  2. 2.Department of Mathematics, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations