manuscripta mathematica

, Volume 121, Issue 3, pp 385–410 | Cite as

Finite filtrations of modules and shellable multicomplexes

Article

Abstract

We introduce pretty clean modules, extending the notion of clean modules by Dress, and show that pretty clean modules are sequentially Cohen–Macaulay. We also extend a theorem of Dress on shellable simplicial complexes to multicomplexes.

Mathematics Subject Classification (2000)

13C13 13C14 05E99 16W70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apel J. (2003) On a conjecture of R.P.Stanley; Part I – Monomial ideals. J. Algebr. Comb. 17, 36–59Google Scholar
  2. 2.
    Björner A., Wachs M. (1997) Shellable nonpure complexes and posets. I. Trans. Amer. Math. Soc. 349(10): 3945–3975MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruns W., Herzog J. (1996) Cohen–Macaulay rings, Revised edn. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Dress A. (1993) A new algebraic criterion for shellability. Beitr. Algebr. Geom. 340(1): 45–55MathSciNetGoogle Scholar
  5. 5.
    Eisenbud, D.: Commutative algebra, with a view toward geometry. In: Graduate Texts in Mathematics Springer, Berlin Heidelberg New York (1995)Google Scholar
  6. 6.
    Herzog J., Popescu D., Vladoiu M. (2003) On the Ext-modules of ideals of Borel type. Contemp. Math. 331, 171–186MATHMathSciNetGoogle Scholar
  7. 7.
    Herzog J., Sbarra E. (2000) Sequentially Cohen–Macaulay modules and local cohomology. In: Algebra, Arithmetic and Geometry, Part I, II. Tata Inst. Fund. Res. Stud. Math. 16, 327–340MathSciNetGoogle Scholar
  8. 8.
    Hoşten S., Thomas R.R. (1999) Standard pairs and group relaxations in integer programming. J. Pure Appl. Algebr. 139, 133–157CrossRefGoogle Scholar
  9. 9.
    Maclagan D., Smith G. (2005) Uniform bounds on multigraded regularity, J. Algebr. Geom. 14, 137–164MATHMathSciNetGoogle Scholar
  10. 10.
    Matsumura H. (1986) Commutative Ring Theory. Cambridge University Press, CambridgeMATHGoogle Scholar
  11. 11.
    Nagel, U., Römer, T.: Extended degree functions and monomial modules. (To appear in Trans. Am. Math. Soc)Google Scholar
  12. 12.
    Pardue K. (1994) Nonstandard Borel fixed ideals. Dissertation, Brandeis UniversityGoogle Scholar
  13. 13.
    Schenzel, P.: On the dimension filtration and Cohen–Macaulay filtered modules. In: Commutative algebra and algebraic geometry (Ferrara). Lecture Notes in Pure and Appl. Math. 206, 245–264. Dekker, New York, 1999Google Scholar
  14. 14.
    Simon R.S. (1994) Combinatorial properties of “Cleanness”. J. Algebr. 167, 361–388MATHCrossRefGoogle Scholar
  15. 15.
    Stanley R.P. (1983) Combinatorics and Commutative Algebra. Birkhäuser, BasedMATHGoogle Scholar
  16. 16.
    Stanley R.P. (1982) Linear Diophantine equations and local cohomology. Invent. Math. 68, 175–193MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Sturmfels B., Trung N.V., Vogel W. (1995) Bounds on degrees of projective schemes. Math. Ann. 302, 417–432MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Villarreal R.H. (2001) Monomial Algebras. Dekker, New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Fachbereich Mathematik und InformatikUniversität Duisburg–EssenEssenGermany
  2. 2.Institute of Mathematics “Simion Stoilow”University of BucharestBucharestRomania

Personalised recommendations