manuscripta mathematica

, Volume 119, Issue 2, pp 225–241 | Cite as

Conjugacy classes of affine automorphisms of Open image in new window and linear automorphisms of ℙ n in the Cremona groups

  • Jérémy Blanc


We describe the conjugacy classes of affine automorphisms in the group Aut(n, Open image in new window ) (respectively Bir( Open image in new window )) of automorphisms (respectively of birational maps) of Open image in new window . From this we deduce also the classification of conjugacy classes of automorphisms of ℙ n in the Cremona group Bir( Open image in new window ).


Number Theory Algebraic Geometry Conjugacy Class Topological Group Linear Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberich-Carramiñana, M.: Geometry of the plane Cremona maps, Lecture Notes in Math., 1769, Springer, Berlin, 2002Google Scholar
  2. 2.
    Bayle, L., Beauville, A.: Birational involutions of P 2. Asian J. Math. 4 (1), 11–17 (2000)MathSciNetGoogle Scholar
  3. 3.
    Beauville, A., Blanc, J.: On Cremona transformations of prime order. C.R. Acad. Sci. Paris, Ser. I 339, 257–259 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    De Fernex, T.: On planar Cremona maps of prime order. Nagoya Math. J. 174 (2004)Google Scholar
  5. 5.
    Gonzalez-Sprinberg, G., Pan, I.: On the monomial birational maps of the projective space. An. Acad. Brasil. Ciênc. 75 (2), 129–134 (2003)MathSciNetGoogle Scholar
  6. 6.
    Hudson, H.: Cremona transformations in the plane and the space. Cambridge University Press, 1927Google Scholar
  7. 7.
    Kantor, S.: Theorie der endligen Gruppen von eindeutigen Transformationen in der Ebene. Mayer & Müller, Berlin, 1895Google Scholar
  8. 8.
    Kraft, H.: Algebraic automorphisms of affine space. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 251–274Google Scholar
  9. 9.
    Kraft, H., Schwarz, G.: Finite automorphisms of affine n-space. In: Automorphisms of affine spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 55–66Google Scholar
  10. 10.
    Wiman, A.: Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. Math. Ann., vol. xlviii, 1896, pp. 497–498Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Section de mathématiquesUniversité de GenèveGenève 4Switzerland

Personalised recommendations