Advertisement

manuscripta mathematica

, Volume 115, Issue 4, pp 521–538 | Cite as

Positive supersolutions to general nonlinear elliptic equations in exterior domains

  • Vitali Liskevich
  • I.I. Skrypnik
  • I.V. Skrypnik
Article

Abstract.

We study the problem of non-existence of positive solutions to the elliptic inequalities involving quasilinear operators of the type −divA(x,u,∇u)≥|x| s u p , in the exterior domains in ℝ N , N≥3, p>1.

Keywords

Number Theory Elliptic Equation Algebraic Geometry Topological Group Exterior Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berestycki, H., Capuzzo-Dolcetta, I. and Nirenberg, L.: Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal. 4, 59–78 (1994)zbMATHGoogle Scholar
  2. 2.
    Bidaut-Véron, M.-F.: Local and global behavior of solutions of quasilinear equations of Emden-Fowler type. Arch. Rational Mech. Anal. 107, 293–324 (1989)Google Scholar
  3. 3.
    Bidaut-Veron, M.-F. and Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84, 1–49 (2001)zbMATHGoogle Scholar
  4. 4.
    Birindelli, I. and Mitidieri, E.: Liouville theorems for elliptic inequalities and applications. Proc. Roy. Soc. Edinburgh Sect. A 128, 1217–1247 (1998)zbMATHGoogle Scholar
  5. 5.
    Gidas, B. and Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl.Math. 34, 525–598 (1981)zbMATHGoogle Scholar
  6. 6.
    Kenig, C.E. and Ni, W.-M.: An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry. Amer. J. Math. 106(3), 689–702 (1984)zbMATHGoogle Scholar
  7. 7.
    Kondratiev, V., Liskevich, V. and Sobol, Z.: Second-order semilinear elliptic inequalities in exterior domains. J. Diff. Eq. 187, 429–455 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Kondratiev, V., Liskevich, V., Sobol, Z. and Us, A.: Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains. J. London Math. Soc.(2), 69, 107–127 (2004)Google Scholar
  9. 9.
    Mitidieri, E. and Pohožaev, S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities (Russian). Tr. Mat. Inst. Steklova 234, 1–384 (2001)MathSciNetGoogle Scholar
  10. 10.
    Serrin, J.: Local behaviour of solutions of quasilinear equations. Acta Mathematica, 111, 247–302 (1964)Google Scholar
  11. 11.
    Serrin, J. and Zou, H.: Cauchy-Liouville and universal boundedness theorem for quasilinear elliptic equations and inequalities. Acta Mathematica (2003)Google Scholar
  12. 12.
    Skrypnik, I.V.: On point-wise estimates of certain capacity potentials. In: General theory of boundary value problems. Kyiv, Naukova Dumka (eds.), (1983) 198–206 (Russian)Google Scholar
  13. 13.
    Skrypnik, I.V.: Methods of analysis of nonlinear elliptic boundary value problems. Translations of A.M.S. 139, Providence, 1994Google Scholar
  14. 14.
    Véron, L.: Singularities of Solutions of Second Order Quasilinear Equations. Pitman Res. Notes Math. 353, (1996)Google Scholar
  15. 15.
    Zhang, Q.S.: An optimal parabolic estimate and its applications in prescribing scalar curvature on some open manifolds with Ricci ≥ 0. Math. Ann. 316, 703–731 (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, Q.S.: A Liouville type theorem for some critical semilinear elliptic equations on noncompact manifolds. Indiana Univ. Math. J. 50, 1915–1936 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vitali Liskevich
    • 1
  • I.I. Skrypnik
    • 2
  • I.V. Skrypnik
    • 2
  1. 1.School of MathematicsUniversity of BristolBristolUnited Kingdom
  2. 2.Institute of Applied Mathematics and MechanicsDonetskUkraine

Personalised recommendations