manuscripta mathematica

, Volume 115, Issue 3, pp 361–378 | Cite as

Cotangent cohomology of Stanley-Reisner rings



Simplicial complexes X provide commutative rings A(X) via the Stanley- Reisner construction. We calculated the cotangent cohomology, i.e., T1 and T2 of A(X) in terms of X. These modules provide information about the deformation theory of the algebro geometric objects assigned to X.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altmann, K., Christophersen, J.A.: Deforming Stanley-Reisner ringsGoogle Scholar
  2. 2.
    André, M.: Homologie des algèbres commutatives. Springer-Verlag, 1974Google Scholar
  3. 3.
    Bayer, D., Peeva, I., Sturmfelds, B.: Monomial resolutions. Math. Res. Lett. 5 (1–2), 31–46 (1998)Google Scholar
  4. 4.
    Brumatti, P., Simis, A.: The module of derivations of a Stanley-Reisner ring. Proc. Am. Math. Soc. 123, 1309–1318 (1995)MATHGoogle Scholar
  5. 5.
    Ishida, M.-N., Oda, T.: Torus embeddings and tangent complexes. Tôhoku Math. J. 33, 337–381 (1981)MATHGoogle Scholar
  6. 6.
    Laudal, O.A.: Formal moduli of algebraic structures. Lecture Notes in Mathematics, Vol. 754, Springer-Verlag, 1979Google Scholar
  7. 7.
    Spanier, E.H.: Algebraic topology. McGraw-Hill, 1966Google Scholar
  8. 8.
    Symms, J.: On deformations of unions of planes in projective space. Math. Z. 224, 363–384 (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.FB Mathematik und InformatikWE2, Freie Universität BerlinBerlinGermany
  2. 2.Department of MathematicsUniversity of Oslo at BlindernOsloNorway

Personalised recommendations