manuscripta mathematica

, Volume 112, Issue 4, pp 433–440 | Cite as

Cycles in G-orbits in G-flag manifolds

Article

Abstract.

There is a natural duality between orbits γ of a real form G of a complex semisimple group G on a homogeneous rational manifold Z=G/P and those κ of the complexification K of any of its maximal compact subgroups K: (γ,κ) is a dual pair if γ∩κ is a K-orbit. The cycle space C(γ) is defined to be the connected component containing the identity of the interior of {g:g(κ)∩γ is non-empty and compact}. Using methods which were recently developed for the case of open G-orbits, geometric properties of cycles are proved, and it is shown that C(γ) is contained in a domain defined by incidence geometry. In the non-Hermitian case this is a key ingredient for proving that C(γ) is a certain explicitly computable universal domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhiezer,~D., Gindikin,~S.: On the Stein extensions of real symmetric spaces. Math. Annalen 286, 1–12 (1990)MathSciNetMATHGoogle Scholar
  2. 2.
    Barchini,~L.: Stein extensions of real symmetric spaces and the geometry of the flag manifold. To appearGoogle Scholar
  3. 3.
    Barlet,~D., Kozairz,~V.: Fonctions holomorphes sur l’espace des cycles: la méthode d’intersection. Math. Res. Lett. 7, 537–550 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Barlet,~D., Magnusson,~J.: Intégration de classes de cohomologie méromorphes et diviseurs d’incidence. Ann. Sci. École Norm. Sup. 31, 811–842 (1998)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bremigan,~R., Lorch,~J.: Orbit duality for flag manifolds. Manuscripta Math. 109, 233–261 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Burns,~D., Halverscheid,~S., Hind,~R.: The geometry of Grauert tubes and complexification of symmetric spaces. To appear in Duke Math. J.Google Scholar
  7. 7.
    Crittenden,~R.J.: Minimum and conjugate points in symmetric spaces. Canad. J. Math. 14, 320–328 (1962)MATHGoogle Scholar
  8. 8.
    Fels,~G., Huckleberry,~A.: Characterization of cycle domains via Kobayashi hyperbolicity. (AG/0204341)Google Scholar
  9. 9.
    Gindikin,~S., Matsuki,~T.: Stein extensions of riemannian symmetric spaces and dualities of orbits on flag manifolds. MSRI Preprint 2001–028Google Scholar
  10. 10.
    Huckleberry,~A.: On certain domains in cycle spaces of flag manifolds. Math. Annalen 323, 797–810 (2002)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Huckleberry,~A., Wolf,~J.A.: Schubert varieties and cycle spaces. (AG/0204033, to appear in Duke Math. J.)Google Scholar
  12. 12.
    Huckleberry,~A., Wolf,~J.A.: Cycles Spaces of Flag Domains: A Complex Geometric Viewpoint (RT/0210445)Google Scholar
  13. 13.
    Matsuki,~T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan 31 n.2 331–357 (1979)Google Scholar
  14. 14.
    Mirkovič, I., Uzawa, K., Vilonen, K.: Matsuki correspondence for sheaves. Invent. Math. 109, 231–245 (1992)MathSciNetGoogle Scholar
  15. 15.
    Wolf,~J.A.: The action of a real semisimple Lie group on a complex manifold, I: Orbit structure and holomorphic arc components. Bull. Am. Math. Soc. 75, 1121–1237 (1969)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Fakultät für MathematikRuhr–Universität BochumBochumGermany

Personalised recommendations