manuscripta mathematica

, Volume 112, Issue 2, pp 161–169 | Cite as

A stability criterion for nonparametric minimal submanifolds

Article

Abstract.

An n-dimensional minimal submanifold Σ of ℝn+m is called non-parametric if Σ can be represented as the graph of a vector-valued function f : D⊂ℝn↦ℝm. This note provides a sufficient condition for the stability of such Σ in terms of the norm of the differential df.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbosa, J.L., do Carmo, M.: On the size of a stable minimal surface in ℝ3. Am. J. Math. 98, 515–528 (1976)MATHGoogle Scholar
  2. 2.
    Barbosa, J.L., do Carmo, M.: Stable minimal surfaces. Bull. Am. Math. Soc. 80, 581–583 (1974)MATHGoogle Scholar
  3. 3.
    Chern, S.S.: Minimal submanifolds in a Riemannian manifold. Department of Mathematics Technical Report 19 (New Series), Univ. of Kansas, Lawrence, Kan. 1968 iii+58 ppGoogle Scholar
  4. 4.
    Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Comm. Pure Appl. Math. 33, 199–211 (1980)MathSciNetMATHGoogle Scholar
  5. 5.
    Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 48–156 (1982)Google Scholar
  6. 6.
    Lawson, H.B., Osserman, R.: Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math. 139, 1–17 (1977)MathSciNetMATHGoogle Scholar
  7. 7.
    McLean, R.C.: Deformations of calibrated submanifolds. Comm. Anal. Geom. 6, 705–747 (1998)MathSciNetMATHGoogle Scholar
  8. 8.
    Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)Google Scholar
  9. 9.
    Wang, M-T.: The Dirichlet problem for the minimal surface system in arbitrary codimension. (2002) math.AP/0209175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsNational Taiwan UniversityTaiwan
  2. 2.Department of MathematicsColumbia UniversityU.S.A

Personalised recommendations