manuscripta mathematica

, Volume 112, Issue 2, pp 161–169 | Cite as

A stability criterion for nonparametric minimal submanifolds



An n-dimensional minimal submanifold Σ of ℝn+m is called non-parametric if Σ can be represented as the graph of a vector-valued function f : D⊂ℝn↦ℝm. This note provides a sufficient condition for the stability of such Σ in terms of the norm of the differential df.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbosa, J.L., do Carmo, M.: On the size of a stable minimal surface in ℝ3. Am. J. Math. 98, 515–528 (1976)MATHGoogle Scholar
  2. 2.
    Barbosa, J.L., do Carmo, M.: Stable minimal surfaces. Bull. Am. Math. Soc. 80, 581–583 (1974)MATHGoogle Scholar
  3. 3.
    Chern, S.S.: Minimal submanifolds in a Riemannian manifold. Department of Mathematics Technical Report 19 (New Series), Univ. of Kansas, Lawrence, Kan. 1968 iii+58 ppGoogle Scholar
  4. 4.
    Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Comm. Pure Appl. Math. 33, 199–211 (1980)MathSciNetMATHGoogle Scholar
  5. 5.
    Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 48–156 (1982)Google Scholar
  6. 6.
    Lawson, H.B., Osserman, R.: Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math. 139, 1–17 (1977)MathSciNetMATHGoogle Scholar
  7. 7.
    McLean, R.C.: Deformations of calibrated submanifolds. Comm. Anal. Geom. 6, 705–747 (1998)MathSciNetMATHGoogle Scholar
  8. 8.
    Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)Google Scholar
  9. 9.
    Wang, M-T.: The Dirichlet problem for the minimal surface system in arbitrary codimension. (2002) math.AP/0209175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsNational Taiwan UniversityTaiwan
  2. 2.Department of MathematicsColumbia UniversityU.S.A

Personalised recommendations