Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impact of genetic variants of selected cytochrome P450 isoenzymes on pharmacokinetics and pharmacodynamics of clopidogrel in patients co-treated with atorvastatin or rosuvastatin

  • 44 Accesses



Impaired antiplatelet effect of clopidogrel (CLP) can result from drug-drug interactions and genetic polymorphisms of drug-metabolizing enzymes. The aim of the study was to evaluate the effect of genetic polymorphisms of ABCB1 and the selected cytochrome P450 isoenzymes on the pharmacodynamics and pharmacokinetics of CLP and its metabolites in patients co-treated with atorvastatin or rosuvastatin.


The study involved 50 patients after coronary angiography/angioplasty treated with CLP and atorvastatin (n = 25) or rosuvastatin (n = 25) for at least 6 months. Plasma concentrations of CLP, diastereoisomers of thiol metabolite (inactive H3 and active H4), and inactive CLP carboxylic acid metabolite were measured by UPLC-MS/MS method. Identification of the CYP2C19*2, CYP2C19*17, CYP3A4*1G, CYP1A2*1F, and ABCB1 C3435T genetic polymorphisms was performed by PCR-RFLP, while platelet reactivity units (PRU) were tested using the VerifyNow P2Y12 assay.


There were significant differences in the pharmacokinetic parameters of the H4 active metabolite of CLP in the atorvastatin and rosuvastatin group divided according to their CYP2C19 genotype. There were no significant associations between CYP3A4, CYP1A2, and ABCB1 genotypes and pharmacokinetic parameters in either statin groups. In the multivariate analysis, CYP2C19*2 genotype and non-genetic factors including BMI, age, and diabetes significantly affected platelet reactivity in the studied groups of patients (P < 0.01). In the atorvastatin group, CYP2C19*2, CYP3A4*1G, and ABCB1 C3435T TT genotypes were independent determinants of PRU values (P < 0.01).


The CYP2C19*2 allele is the primary determinant of the exposition to the H4 active metabolite of clopidogrel and platelet reactivity in patients co-treated with atorvastatin or rosuvastatin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Steinhubl SR, Berger PB, Mann JT et al (2002) Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288:2411–2420. https://doi.org/10.1001/jama.288.19.2411

  2. 2.

    Sangkuhl K, Klein TE, Altman RB (2010) Clopidogrel pathway. Pharmacogenet Genomics 20:463–465. https://doi.org/10.1097/FPC.0b013e3283385420

  3. 3.

    Zhu H-J, Wang X, Gawronski BE et al (2013) Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther 344:665–672. https://doi.org/10.1124/jpet.112.201640

  4. 4.

    Pereillo J-M, Maftouh M, Andrieu A, Uzabiaga MF, Fedeli O, Savi P, Pascal M, Herbert JM, Maffrand JP, Picard C (2002) Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos Biol Fate Chem 30:1288–1295. https://doi.org/10.1124/DMD.30.11.1288

  5. 5.

    Liu C, Chen Z, Zhong K, Li L, Zhu W, Chen X, Zhong D (2015) Human liver cytochrome P450 enzymes and microsomal thiol methyltransferase are involved in the stereoselective formation and methylation of the pharmacologically active metabolite of clopidogrel. Drug Metab Dispos Biol Fate Chem 43:1632–1641. https://doi.org/10.1124/dmd.115.064949

  6. 6.

    Savi P, Herbert J-M (2005) Clopidogrel and ticlopidine: P2Y 12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31:174–183. https://doi.org/10.1055/s-2005-869523

  7. 7.

    Nguyen TA, Diodati JG, Pharand C (2005) Resistance to clopidogrel: a review of the evidence. J Am Coll Cardiol 45:1157–1164. https://doi.org/10.1016/j.jacc.2005.01.034

  8. 8.

    Taubert D, Vonbeckertah N, Grimberg G et al (2006) Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther 80:486–501. https://doi.org/10.1016/j.clpt.2006.07.007

  9. 9.

    Stokanovic D, Nikolic VN, Konstantinovic SS, Zvezdanovic JB, Lilic J, Apostolovic SR, Pavlovic M, Zivkovic VS, Jevtovic-Stoimenov T, Jankovic SM (2015) P-glycoprotein polymorphism C3435T is associated with dose-adjusted clopidogrel and 2-oxo-clopidogrel concentration. Pharmacology 97:101–106. https://doi.org/10.1159/000442712

  10. 10.

    Jaitner J, Morath T, Byrne RA et al (2012) No association of ABCB1 C3435T genotype with clopidogrel response or risk of stent thrombosis in patients undergoing coronary stenting. Circ Cardiovasc Interv 5(82–88):S1–S2. https://doi.org/10.1161/Circinterventions.111.965400

  11. 11.

    Wallentin L, James S, Storey RF et al (2010) Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet Lond Engl 376:1320–1328. https://doi.org/10.1016/S0140-6736(10)61274-3

  12. 12.

    Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, Antman EM, Braunwald E, Sabatine MS (2010) Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON–TIMI 38 trial: a pharmacogenetic analysis. Lancet 376:1312–1319. https://doi.org/10.1016/S0140-6736(10)61273-1

  13. 13.

    Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB, Klein TE (2012) PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics 22:159–165. https://doi.org/10.1097/FPC.0b013e32834d4962

  14. 14.

    Dean L (2012) Clopidogrel therapy and CYP2C19 genotype. National Center for Biotechnology Information (US)

  15. 15.

    Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, Morath T, Schömig A, von Beckerath N, Kastrati A (2010) Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121:512–518. https://doi.org/10.1161/CIRCULATIONAHA.109.885194

  16. 16.

    Bauer T, Bouman HJ, van Werkum JW, et al (2011) Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ 343:d4588. https://doi.org/10.1136/BMJ.D4588

  17. 17.

    Paré G, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Hirsh J, Simonsen K, Bhatt DL, Fox KA, Eikelboom JW (2010) Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med 363:1704–1714. https://doi.org/10.1056/NEJMoa1008410

  18. 18.

    Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP (2011) CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events. JAMA 306:2704–2714. https://doi.org/10.1001/jama.2011.1880

  19. 19.

    He B, Shi L, Qiu J, Tao L, Li R, Yang L, Zhao SJ (2011) A functional polymorphism in the CYP3A4 gene is associated with increased risk of coronary heart disease in the Chinese Han population. Basic Clin Pharmacol Toxicol 108:208–213. https://doi.org/10.1111/j.1742-7843.2010.00657.x

  20. 20.

    Liu R, Zhou Z, Chen Y, Li JL, Yu WB, Chen XM, Zhao M, Zhao YQ, Cai YF, Jin J, Huang M (2016) Associations of CYP3A4, NR1I2, CYP2C19 and P2RY12 polymorphisms with clopidogrel resistance in Chinese patients with ischemic stroke. Acta Pharmacol Sin 37:882–888. https://doi.org/10.1038/aps.2016.41

  21. 21.

    Danielak D, Karaźniewicz-Łada M, Wiśniewska K, Bergus P, Burchardt P, Komosa A, Główka F (2017) Impact of CYP3A4*1G allele on clinical pharmacokinetics and pharmacodynamics of clopidogrel. Eur J Drug Metab Pharmacokinet 42:99–107. https://doi.org/10.1007/s13318-016-0324-7

  22. 22.

    Brackbill ML, Kidd RS, Abdoo AD, Warner JG Jr, Harralson AF (2009) Frequency of CYP3A4, CYP3A5, CYP2C9, and CYP2C19 variant alleles in patients receiving clopidogrel that experience repeat acute coronary syndrome. Heart Vessel 24:73–78. https://doi.org/10.1007/s00380-008-1085-2

  23. 23.

    Woo PK, Joo PJ, Ki-Hyun J et al (2011) Enhanced clopidogrel responsiveness in smokers. Arterioscler Thromb Vasc Biol 31:665–671. https://doi.org/10.1161/ATVBAHA.110.217182

  24. 24.

    Finkelman RD, Wang T-D, Wang Y, Azumaya CT, Birmingham BK, Wissmar J, Mosqueda-Garcia R (2015) Effect of CYP2C19 polymorphism on the pharmacokinetics of rosuvastatin in healthy Taiwanese subjects. Clin Pharmacol Drug Dev 4:33–40. https://doi.org/10.1002/cpdd.135

  25. 25.

    Luvai A, Mbagaya W, Hall AS, Barth JH (2012) Rosuvastatin: a review of the pharmacology and clinical effectiveness in cardiovascular disease. Clin Med Insights Cardiol 6:17–33. https://doi.org/10.4137/CMC.S4324

  26. 26.

    Karaźniewicz-Łada M, Danielak D, Rubiś B, Burchardt P, Oszkinis G, Główka F (2014) The influence of genetic polymorphism of Cyp2c19 isoenzyme on the pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases. J Clin Pharmacol 54:874–880. https://doi.org/10.1002/jcph.323

  27. 27.

    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinforma Oxf Engl 23:1289–1291. https://doi.org/10.1093/bioinformatics/btm091

  28. 28.

    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

  29. 29.

    Karaźniewicz-Łada M, Rzeźniczak J, Główka F, Gumienna A, Dolatowski F, Słomczyński M, Burchardt P (2019) Influence of statin treatment on pharmacokinetics and pharmacodynamics of clopidogrel and its metabolites in patients after coronary angiography/angioplasty. Biomed Pharmacother 116:108991. https://doi.org/10.1016/j.biopha.2019.108991

  30. 30.

    Bonello L, Tantry US, Marcucci R, Blindt R, Angiolillo DJ, Becker R, Bhatt DL, Cattaneo M, Collet JP, Cuisset T, Gachet C, Montalescot G, Jennings LK, Kereiakes D, Sibbing D, Trenk D, van Werkum J, Paganelli F, Price MJ, Waksman R, Gurbel PA, Working Group on High On-Treatment Platelet Reactivity (2010) Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol 56:919–933. https://doi.org/10.1016/j.jacc.2010.04.047

  31. 31.

    Lau WC, Waskell LA, Watkins PB, Neer CJ, Horowitz K, Hopp AS, Tait AR, Carville DG, Guyer KE, Bates ER (2003) Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction. Circulation 107:32–37. https://doi.org/10.1161/01.cir.0000047060.60595.cc

  32. 32.

    Malmström RE, Ostergren J, Jørgensen L, Hjemdahl P, CASTOR investigators (2009) Influence of statin treatment on platelet inhibition by clopidogrel - a randomized comparison of rosuvastatin, atorvastatin and simvastatin co-treatment. J Intern Med 266:457–466. https://doi.org/10.1111/j.1365-2796.2009.02119.x

  33. 33.

    Pelliccia F, Rosano G, Marazzi G, Vitale C, Spoletini I, Franzoni F, Speziale G, Polacco M, Greco C, Gaudio C (2014) Pharmacodynamic effects of atorvastatin versus rosuvastatin in coronary artery disease patients with normal platelet reactivity while on dual antiplatelet therapy--the PEARL randomized cross-over study. Eur J Pharmacol 725:18–22. https://doi.org/10.1016/j.ejphar.2014.01.006

  34. 34.

    Serebruany VL, Midei MG, Malinin AI, Oshrine BR, Lowry DR, Sane DC, Tanguay JF, Steinhubl SR, Berger PB, O'Connor CM, Hennekens CH (2004) Absence of interaction between atorvastatin or other statins and clopidogrel: results from the interaction study. Arch Intern Med 164:2051–2057. https://doi.org/10.1001/archinte.164.18.2051

  35. 35.

    Vinholt P, Poulsen TS, Korsholm L, Kristensen SR, Hallas J, Damkier P, Mickley H (2005) The antiplatelet effect of clopidogrel is not attenuated by statin treatment in stable patients with ischemic heart disease. Thromb Haemost 94:438–443. https://doi.org/10.1160/TH05-01-0046

  36. 36.

    Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, Ikeda T, Kurihara A (2010) Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 38:92–99. https://doi.org/10.1124/dmd.109.029132

  37. 37.

    Fontana P, Hulot J-S, De Moerloose P, Gaussem P (2007) Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects. J Thromb Haemost JTH 5:2153–2155. https://doi.org/10.1111/j.1538-7836.2007.02722.x

  38. 38.

    Shuldiner AR, O’Connell JR, Bliden KP et al (2009) Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:849–857. https://doi.org/10.1001/jama.2009.1232

  39. 39.

    Umemura K, Furuta T, Kondo K (2008) The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects. J Thromb Haemost JTH 6:1439–1441. https://doi.org/10.1111/j.1538-7836.2008.03050.x

  40. 40.

    Suh J-W, Cha M-J, Lee S-P, Chae IH, Bae JH, Kwon TG, Bae JW, Cho MC, Rha SW, Kim HS (2014) Relationship between statin type and responsiveness to clopidogrel in patients treated with percutaneous coronary intervention: a subgroup analysis of the CILON-T trial. J Atheroscler Thromb 21:140–150. https://doi.org/10.5551/jat.19265

  41. 41.

    Park Y, Jeong Y-H, Tantry US, Ahn JH, Kwon TJ, Park JR, Hwang SJ, Gho EH, Bliden KP, Kwak CH, Hwang JY, Kim S, Gurbel PA (2012) Accelerated platelet inhibition by switching from atorvastatin to a non-CYP3A4-metabolized statin in patients with high platelet reactivity (ACCEL-STATIN) study. Eur Heart J 33:2151–2162. https://doi.org/10.1093/eurheartj/ehs083

  42. 42.

    Yang W, Zhao D, Han S et al (2015) CYP3A4*1G regulates CYP3A4 intron 10 enhancer and promoter activity in an allelicdependent manner. Int J Clin Pharmacol Ther 53:647–657. https://doi.org/10.5414/CP202272

  43. 43.

    Zhang W, Chang Y-Z, Kan Q-C, Zhang LR, Li ZS, Lu H, Wang ZY, Chu QJ, Zhang J (2010) CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol 66:61–66. https://doi.org/10.1007/s00228-009-0726-4

  44. 44.

    Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al (2006) Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arterioscler Thromb Vasc Biol 26:1895–1900. https://doi.org/10.1161/01.ATV.0000223867.25324.1a

  45. 45.

    Park JJ, Park KW, Kang J et al (2013) CYP3A4 genetic status may be associated with increased vulnerability to the inhibitory effect of calcium-channel blockers on clopidogrel. Circ J Off J Jpn Circ Soc 77:1289–1296. https://doi.org/10.1253/circj.cj-12-0682

  46. 46.

    Danielak D, Karaźniewicz-Łada M, Wiśniewska K, Bergus P, Burchardt P, Komosa A, Główka F (2017) Impact of CYP3A4*1G allele on clinical pharmacokinetics and pharmacodynamics of clopidogrel. Eur J Drug Metab Pharmacokinet 42:99–107. https://doi.org/10.1007/s13318-016-0324-7

  47. 47.

    Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BH (2010) Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol Drug Saf 19:75–81. https://doi.org/10.1002/pds.1866

  48. 48.

    Spiewak M, Małek ŁA, Kostrzewa G, Kisiel B, Serafin A, Filipiak KJ, Płoski R, Opolski G (2009) Influence of C3435T multidrug resistance gene-1 (MDR-1) polymorphism on platelet reactivity and prognosis in patients with acute coronary syndromes. Kardiol Pol 67:827–834

  49. 49.

    Braun OÖ, Angiolillo DJ, Ferreiro JL, Jakubowski JA, Winters KJ, Effron MB, Duvvuru S, Costigan TM, Sundseth S, Walker JR, Saucedo JF, Kleiman NS, Varenhorst C (2013) Enhanced active metabolite generation and platelet inhibition with prasugrel compared to clopidogrel regardless of genotype in thienopyridine metabolic pathways. Thromb Haemost 110:1223–1231. https://doi.org/10.1160/TH13-03-0263

  50. 50.

    Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M (2009) No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 68:207–213. https://doi.org/10.1111/j.1365-2125.2009.03440.x

  51. 51.

    Wessler JD, Grip LT, Mendell J, Giugliano RP (2013) The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 61:2495–2502. https://doi.org/10.1016/J.JACC.2013.02.058

  52. 52.

    Holtzman CW, Wiggins BS, Spinler SA (2006) Role of P-glycoprotein in statin drug interactions. Pharmacotherapy 26:1601–1607. https://doi.org/10.1592/phco.26.11.1601

  53. 53.

    Chen C, Mireles RJ, Campbell SD et al (2005) Differential interaction of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos Biol Fate Chem 33:537–546. https://doi.org/10.1124/dmd.104.002477

  54. 54.

    Hochholzer W, Trenk D, Fromm MF, Valina CM, Stratz C, Bestehorn HP, Büttner HJ, Neumann FJ (2010) Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol 55:2427–2434. https://doi.org/10.1016/j.jacc.2010.02.031

  55. 55.

    Bouman HJ, Harmsze AM, van Werkum JW, Breet NJ, Bergmeijer TO, ten Cate H, Hackeng CM, Deneer VH, ten Berg J (2011) Variability in on-treatment platelet reactivity explained by CYP2C19*2 genotype is modest in clopidogrel pretreated patients undergoing coronary stenting. Heart 97:1239–1244. https://doi.org/10.1136/hrt.2010.220509

Download references


Authors would like to thank M. Rakicka, P. Kobyłka, and P. Wiącek for technical support in analysis of genetic polymorphism.

Authors’ individual contributions

All authors have contributed significantly to the work and have read and approved the manuscript for publication. M. K.Ł., and P.B. were responsible for the study concept and design. J.R. and M.S. participated in data collection. M.K.Ł., D.K., and D.D. analyzed the data. M.K.Ł., D.D., F.G., and P.B. contributed to the manuscript writing and discussion.


This study was funded by the National Science Centre (NCN) in Poland, grant number 2014/15/B/NZ7/00869.

Author information

Correspondence to Marta Karaźniewicz-Łada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karaźniewicz-Łada, M., Krzyżańska, D., Danielak, D. et al. Impact of genetic variants of selected cytochrome P450 isoenzymes on pharmacokinetics and pharmacodynamics of clopidogrel in patients co-treated with atorvastatin or rosuvastatin. Eur J Clin Pharmacol 76, 419–430 (2020). https://doi.org/10.1007/s00228-019-02822-x

Download citation


  • Atorvastatin
  • Clopidogrel
  • CYP2C19
  • H4 active metabolite
  • Rosuvastatin