European Journal of Clinical Pharmacology

, Volume 75, Issue 12, pp 1705–1711 | Cite as

Drug-induced osteoporosis/osteomalacia: analysis in the French and Spanish pharmacovigilance databases

  • Quentin Dardonville
  • Esther Salguiero
  • Vanessa Rousseau
  • Leila Chebane
  • Jean Luc Faillie
  • Sophie Gautier
  • Jean Louis Montastruc
  • Alfonso Carvajal
  • Haleh BagheriEmail author
Pharmacoepidemiology and Prescription



Osteomalacia and osteoporosis are two metabolic bone disorders that increase the risk of fracture due to several causes. In terms of drugs, apart from corticosteroids, which are known to induce bone disorders, several other drugs used in chronic disease management have also been linked with an increased risk of osteoporosis and osteomalacia.


The aim of this study was to describe spontaneous reports of drug-induced osteoporosis and osteomalacia in the French (FPVDB) and Spanish (SPVDB) pharmacovigilance databases.


Data were provided by the FPVDB and SPVDB. All reports of osteoporosis and osteomalacia recorded from 1985 up to 31 December 2015 inclusive were selected. Taking the time to onset of bone loss into account, all cases occurring in less than 1 month were excluded.


A total of 369 reports (44 cases of osteomalacia, 325 cases of osteoporosis) were registered in the FPVDB and 64 (22 cases of osteomalacia, 42 cases of osteoporosis) in the SPVDB. In France, the top 5 drugs involved in the onset of osteoporosis were corticosteroids accounting for approximately half of the reports (n = 170) followed by systemic antiviral (n = 87), antacid (n = 29), antiepileptic (n = 27) and antithrombotic (n = 24) drugs. The 2 main classes of drugs implicated in osteomalacia were systemic antiretroviral drugs for half of the reports (n = 21) and antiepileptic drugs (n = 15). In Spain, corticosteroids were involved in 35.7% of reported cases of osteoporosis (n = 15) followed by systemic antiviral drugs (n = 12). There was no spontaneous report for antacid drugs. For osteomalacia, the 2 main drug classes were systemic antiretroviral drugs (n = 18, 81.8%) followed by antiepileptics (n = 2, 9.0%). In both countries, concomitant administration of systemic corticosteroids with other suspected drugs did not significantly modify the time to onset of drug-induced osteoporosis.


Despite some differences between the French and Spanish PVDBs, our data consistently show that bone loss is not only restricted to glucocorticoids but also involves antivirals, antiepileptic drugs, antacid drugs or antidepressants. Further analysis might prove useful in exploring the characteristics of drug-induced bone loss on a larger scale.


Osteoporosis Osteomalacia Adverse drug reactions Drug-induced bone loss 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Gifre L, Peris P, Monegal A, Martinez de Osaba MJ, Alvarez L, Guanabens N (2011) Osteomalacia revisited. A report on 28 cases. Clin Rheumatol 30:639–645CrossRefGoogle Scholar
  2. 2.
    Cooper C, Atkinson EJ, Jacobsen SJ, O’Fallon WM, Melton LJ (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005CrossRefGoogle Scholar
  3. 3.
    Riggs BL, Melton LJ (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505S–511SCrossRefGoogle Scholar
  4. 4.
    Kok C, Sambrook PN (2009) Secondary osteoporosis in patients with an osteoporotic fracture. Best Pract Res Clin. Rheumatol 23:769–779CrossRefGoogle Scholar
  5. 5.
    Bannwarth B (2007) Drug-induced musculoskeletal disorders. Drug Saf 30:27–46CrossRefGoogle Scholar
  6. 6.
    Davidge Pitts CJ, Kearns AE (2011) Update on medications with adverse skeletal effects. Mayo Clin Proc Mayo Clin 86:338–343CrossRefGoogle Scholar
  7. 7.
    Mazziotti G, Canalis E, Giustina A (2010) Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 123:877–884CrossRefGoogle Scholar
  8. 8.
    Keshav P, Gona A, Humphrey MB (2014) Medication-induced osteoporosis: screening and treatment strategies. Ther Adv Musculoskel Dis 6:185–202CrossRefGoogle Scholar
  9. 9.
    Vial T (2016) French pharmacovigilance. Missions, organization and perspectives. Therapie 71:143–150CrossRefGoogle Scholar
  10. 10.
    Manso G (2010) La situación actual del Sistema Español de Farmacovigilancia de Medicamentos de uso Humano. En: Manso G, Hidalgo A, Carvajal A, de Abajo FJ, coordinadores. Los primeros 25 años del Sistema Español de Farmacovigilancia de Medicamentos de Uso Humano. Oviedo: Universidad de Oviedo; P.19–23. Accessed 04/04/2019. Available at:
  11. 11.
    Miremont-Salamé G, Théophile H, Haramburu F, Bégaud B (2016) Causality assessment in pharmacovigilance: the French method and its successive updates. Therapie 71:179–186CrossRefGoogle Scholar
  12. 12.
    Edwards IR, Aronson JK (2000) Adverse drug reactions: definitions, diagnosis, and management. Lancet 356:1255–1259CrossRefGoogle Scholar
  13. 13.
    Brown DEG, Wood L, Wood S (1999) The Medical Dictionary for Regulatory Activities (MedDRA). Drug Saf 20:109–117CrossRefGoogle Scholar
  14. 14.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656PubMedPubMedCentralGoogle Scholar
  15. 15.
    Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C (2005) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 20:1486–1493CrossRefGoogle Scholar
  16. 16.
    Carvajal A, Macias D, Sáinz M, Ortega S, Martín Arias LH, Velasco A, Bagheri H, Lapeyre-Mestre M, Montastruc JL (2006) HMG CoA reductase inhibitors and impotence: two case series from the Spanish and French drug monitoring systems. Drug Saf 29:143–149CrossRefGoogle Scholar
  17. 17.
    Montastruc F, Scotto S, Vaz IR, Guerra LN, Escudero A, Sáinz M, Falomir T, Bagheri H, Herdeiro MT, Venegoni M, Montastruc JL, Carvajal A (2014) Hepatotoxicity related to agomelatine and other new antidepressants: a case/noncase approach with information from the Portuguese, French, Spanish, and Italian pharmacovigilance systems. J Clin Psychopharmacol 34:327–330CrossRefGoogle Scholar
  18. 18.
    Nguyen KD, Bagheri B, Bagheri H (2018) Drug-induced bone loss: a major safety concern in Europe. Expert Opin Drug Saf 17:1005–1014CrossRefGoogle Scholar
  19. 19.
    Haney EM, Warden SJ, Bliziotes MM (2010) Effects of selective serotonin reuptake inhibitors on bone health in adults: time for recommendations about screening, prevention and management. Bone 46:13–17CrossRefGoogle Scholar
  20. 20.
    Bliziotes MM, Eshleman A, Zhang X, Wiren K (2001) Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone 29:477–486CrossRefGoogle Scholar
  21. 21.
    Warden SJ, Robling AG, Sanders MS, Bliziotes MM, Turner CH (2005) Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology 146:685–693CrossRefGoogle Scholar
  22. 22.
    Bradaschia-Correa V, Josephson AM, Mehta D, Mizrahi M, Neibart SS, Liu C, Kennedy OD, Castillo AB, Egol KA, Leucht P (2017) The selective serotonin reuptake inhibitor fluoxetine directly inhibits osteoblast differentiation and mineralization during fracture healing in mice. J Bone Miner Res 32:821–833CrossRefGoogle Scholar
  23. 23.
    Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G (2008) LRP5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837CrossRefGoogle Scholar
  24. 24.
    Lavoie B, Roberts JA, Haag MM, Spohn SN, Margolis KG, Sharkey KA, Lian JB, Mawe GM (2019) Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res 140:75–84CrossRefGoogle Scholar
  25. 25.
    Lavoie B, Lian JB, Mawe GM (2017) Regulation of bone metabolism by serotonin. Adv Exp Med Biol 1033:35–46CrossRefGoogle Scholar
  26. 26.
    Weaver J, Kawsky J, Corboy A (2019) Antipsychotic use and fracture risk: an evaluation of incidence at a Veterans Affairs Medical Center. Ment Health Clin 9:6–11CrossRefGoogle Scholar
  27. 27.
    Poly TN, Islam MM, Yang HC, Wu CC, Li YJ (2019) Proton pump inhibitors and risk of hip fracture: a meta-analysis of observational studies. Osteoporos Int 30:103–114CrossRefGoogle Scholar
  28. 28.
    Zhou B, Huang Y, Li H, Sun W, Liu J (2016) Proton-pump inhibitors and risk of fractures: an update meta-analysis. Osteoporos Int 27:339–347CrossRefGoogle Scholar
  29. 29.
    Liu J, Li X, Fan L, Yang J, Wang J, Sun J, Wang Z (2019) Proton pump inhibitors therapy and risk of bone diseases: an update meta-analysis. Life Sci 218:213–223CrossRefGoogle Scholar
  30. 30.
    Munson JC, Bynum JPW, Bell JE, McDonough C, Wang Q, Tosteson T, Tosteson ANA (2018) Impact of prescription drugs on second fragility fractures among US Medicare patients. Osteoporos Int 29:2771–2779CrossRefGoogle Scholar
  31. 31.
    Hussain S, Siddiqui AN, Habib A, Hussain MS, Najmi AK (2018) Proton pump inhibitors’ use and risk of hip fracture: a systematic review and meta-analysis. Rheumatol Int 38:1999–2014CrossRefGoogle Scholar
  32. 32.
    Ahmad AN, Ahmad SN, Ahmad N (2017) HIV infection and bone abnormalities. Open Orthop J 21:777–784CrossRefGoogle Scholar
  33. 33.
    Wei Z, He JW, Fu WZ, Zhang ZL (2016) Osteomalacia induced by long-term low-dose adefovir dipivoxil: clinical characteristics and genetic predictors. Bone. 93:97–103CrossRefGoogle Scholar
  34. 34.
    Lucey JM, Hsu P, Ziegler JB (2013) Tenofovir-related Fanconi’s syndrome and osteomalacia in a teenager with HIV. BMJ Case Rep pii 2013:bcr2013008674. CrossRefGoogle Scholar
  35. 35.
    Mehsen-Cêtre N, Cazanave C (2017) Osteoarticular manifestations associated with HIV infection. Joint Bone spine 84:29–33CrossRefGoogle Scholar
  36. 36.
    Hamed SA (2016) Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs. Expert Rev Clin Pharmacol 9:267–286CrossRefGoogle Scholar
  37. 37.
    Hazell L, Shakir SA (2006) Under-reporting of adverse drug reactions: a systematic review. Drug Saf 29:385–396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Quentin Dardonville
    • 1
  • Esther Salguiero
    • 2
  • Vanessa Rousseau
    • 1
  • Leila Chebane
    • 1
  • Jean Luc Faillie
    • 3
  • Sophie Gautier
    • 4
  • Jean Louis Montastruc
    • 1
  • Alfonso Carvajal
    • 5
  • Haleh Bagheri
    • 1
    Email author
  1. 1.Service de Pharmacologie Médicale et Clinique, Centre de Pharmacovigilance, de Pharmacoépidémiologie et d’Informations sur le Médicament, INSERM U1027, Faculté de MédecineCentre Hospitalier UniversitaireToulouseFrance
  2. 2.Departamento de Medicina, Área de FarmacologíaUniversidad de OviedoOviedoSpain
  3. 3.Département de Pharmacologie Médicale et Toxicologie, Centre de PharmacovigilanceHospitalier UniversitaireMontpellierFrance
  4. 4.Centre Regional de Pharmacovigilance de Lille, UnivLille, INSERMCHU LilleLilleFrance
  5. 5.Centro de Estudios sobre la Seguridad de Medicamentos, School of MedicineUniversity of ValladolidValladolidSpain

Personalised recommendations