European Journal of Clinical Pharmacology

, Volume 75, Issue 11, pp 1491–1502 | Cite as

Dose evaluation of intravenous metamizole (dipyrone) in infants and children: a prospective population pharmacokinetic study

  • Victoria C. Ziesenitz
  • Frédérique Rodieux
  • Andrew Atkinson
  • Carole Borter
  • Julia A. Bielicki
  • Manuel Haschke
  • Urs Duthaler
  • Fabio Bachmann
  • Thomas O. Erb
  • Nicolas Gürtler
  • Stefan Holland-Cunz
  • Johannes N. van den Anker
  • Verena GottaEmail author
  • Marc Pfister
Clinical Trial



The prodrug metamizole is prescribed intravenously for postoperative pain in children, including off-label use in infants < 1 year. We aimed to assess the pharmacokinetics of the main metabolites of metamizole in children aged 3–72 months.


A single dose of 10 mg/kg metamizole was administered intravenously for postoperative analgesia. Pharmacokinetic samples were drawn at predefined time points. Pharmacokinetics of the main active metabolite 4-methylaminoantipyrine and three other metabolites was characterized by both non-compartmental and population pharmacokinetic analysis. AUC0–inf of 4-methylaminoantipyrine was calculated by non-compartmental analysis for two age cohorts (3–23 months, 2–6 years) and compared with the 80–125% range of adult dose–adjusted reference exposure (AUCref). Population pharmacokinetic analysis investigated age and weight dependency of the pharmacokinetics and optimal dosing strategies to achieve equivalent adult exposure.


A total of 25 children aged 5 months–5.8 years (7.8–24.8 kg) with at least one concentration sample were included; 19 children had ≥ 5 predefined samples up to 10 h after metamizole dose administration. AUC0–inf of 4-methylaminoantipyrine in children 2–6 years was 29.9 mg/L/h (95% CI 23.4–38.2), significantly lower than AUCref (80–125% range 39.2–61.2 mg/L/h). AUC0–inf of 4-methylaminoantipyrine in infants < 2 years was 43.6 mg/L/h (95% CI 15.8–119.0), comparable with AUCref, while infants < 12 months showed increased exposure. Observed variability could be partially explained by covariates weight and age.


Age-related changes in pharmacokinetics of 4-methylaminoantipyrine requires reduced weight–based IV dosing in infants < 1 year compared with infants and children up to 6 years (5 versus 10–20 mg/kg) to achieve equivalent adult exposure.

Trial registration identifier: NCT02660177.


Metamizole Dipyrone Pharmacokinetics Children Infants 





4-Acetyl aminoantipyrine


Adverse drug reaction


Adverse events


Akaike information criterion


Area under the curve


Between-subject variability




Maximal plasma concentration




Cytochrome P450






Hydrolysis rate of metamizole, MAA formation rate


Lower limit of quantification




N-Acetyltransferase 2


Objective function value


Post-anesthesia care unit




Population PK


Elimination half-life


Time of Cmax


Typical value


Visual predictive check


World Health Organization



The authors would like to thank the study nurses at the University of Basel Children’s Hospital Outpatient Study Centre (ASZ): Claudia Werner, Michelle Kress, Sabrina Trinkl, and Aurora Frei, study physician Dr. Marie-Luise Decker, and the attending Anesthesiologists Drs. Jens Moll†, Sandra Jeker, Eva Jordi, and Andreas Zutter. We also thank Prof. Christiane Pauli-Magnus, Head of the Department of Clinical Research at the University Hospital Basel, and Prof. Urs Frey, Chief Medical officer at UKBB, for their valuable input regarding the study design. We also would like to thank the patients and their parents for their participation in this study.

Author contributions

F.R., M.P., A.A., T.O.E., M.H., N.G., and J.N.v.d.A. designed the research; V.C.Z., F.R., and J.A.B. performed the research; A.A., V.G., C.B., U.D., F.B., and V.C.Z. analyzed the data; M.H., U.D., and F.B. performed the bioanalysis; V.C.Z., F.R., V.G., and M.P. wrote the manuscript, J.N.v.d.A, T.O.E., M.H., N.G., and S.H.-C. critically revised the manuscript. All authors reviewed and approved the final version of the manuscript before submission.


This study was funded by internal funds of the Division of Pediatric Pharmacology & Pharmacometrics of the University Children’s Hospital Basel (UKBB) and the Swiss National Science Foundation (M.H., SNF 31003A_160216).

Compliance with ethical standards

Conflict of interest

V.C.Z.: none

F.R.: none

A.A.: none

V.G.: none

C.B.: none

J.A.B.: Her husband is a senior corporate counsel at Novartis International AG, Basel, Switzerland, and holds Novartis stock and stock options.

M.H.: none

T.O.E.: none

U.D.: none

F.B.: none

N.G.: none

S.H.-C.: none

J.N.v.d.A.: none

M.P. is a part-time consultant for Certara, L.P.

The Division of Pediatric Pharmacology & Pharmacometrics of the University Children’s Hospital Basel (M.P.) has received an unrestricted educational grant from Sanofi-Aventis Suisse SA.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

228_2019_2720_MOESM1_ESM.pdf (709 kb)
ESM 1 (PDF 709 kb)


  1. 1.
    Brogden RN (1986) Pyrazolone derivatives. Drugs 32(Suppl 4):60–70CrossRefGoogle Scholar
  2. 2.
    Laporte JR, Ibanez L, Vidal X, Vendrell L, Leone R (2004) Upper gastrointestinal bleeding associated with the use of NSAIDs: newer versus older agents. Drug Saf Int J Med Toxicol Drug Exp 27(6):411–420CrossRefGoogle Scholar
  3. 3.
    Zapater P, Llanos L, Barquero C, Bellot P, Pascual S, Carnicer F, Palazon JM, Gimenez P, Esteban A, Llorca L, Frances R, Horga JF, Such J (2015) Acute effects of dipyrone on renal function in patients with cirrhosis: a randomized controlled trial. Basic Clin Pharmacol Toxicol 116(3):257–263CrossRefGoogle Scholar
  4. 4.
    Andrade S, Bartels DB, Lange R, Sandford L, Gurwitz J (2016) Safety of metamizole: a systematic review of the literature. J Clin Pharm Ther 41(5):459–477CrossRefGoogle Scholar
  5. 5.
    Vazquez E, Hernandez N, Escobar W, Vanegas H (2005) Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats. Brain Res 1048(1–2):211–217CrossRefGoogle Scholar
  6. 6.
    Rogosch T, Sinning C, Podlewski A, Watzer B, Schlosburg J, Lichtman AH, Cascio MG, Bisogno T, Di Marzo V, Nusing R, Imming P (2012) Novel bioactive metabolites of dipyrone (metamizol). Bioorg Med Chem 20(1):101–107CrossRefGoogle Scholar
  7. 7.
    Alves D, Duarte I (2002) Involvement of ATP-sensitive K(+) channels in the peripheral antinociceptive effect induced by dipyrone. Eur J Pharmacol 444(1–2):47–52CrossRefGoogle Scholar
  8. 8.
    Levy M, Zylber-Katz E, Rosenkranz B (1995) Clinical pharmacokinetics of dipyrone and its metabolites. Clin Pharmacokinet 28(3):216–234CrossRefGoogle Scholar
  9. 9.
    Bachmann F, Duthaler U, Rudin D, Krahenbuhl S, Haschke M (2018) N-demethylation of N-methyl-4-aminoantipyrine, the main metabolite of metamizole. Eur J Pharm Sci 120:172–180CrossRefGoogle Scholar
  10. 10.
    Martinez C, Andreu I, Amo G, Miranda MA, Esguevillas G, Torres MJ, Blanca-Lopez N, Blanca M, Garcia-Martin E, Agundez JA (2014) Gender and functional CYP2C and NAT2 polymorphisms determine the metabolic profile of metamizole. Biochem Pharmacol 92(3):457–466CrossRefGoogle Scholar
  11. 11.
    Abdalla SO, Elouzi AA, Saad SE, Alem MD, Nagaah TA (2014) Study on the relationship between genetic polymorphisms of cytochrome CYP2C19 and metabolic bioactivation of dipyrone. J Chem Pharm Res (6)Google Scholar
  12. 12.
    Levy M, Flusser D, Zylber-Katz E, Granit L (1984) Plasma kinetics of dipyrone metabolites in rapid and slow acetylators. Eur J Clin Pharmacol 27(4):453–458CrossRefGoogle Scholar
  13. 13.
    Rohdewald P, Drehsen G, Milsmann E, Derendorf H (1983) Relationship between saliva levels of metamizol metabolites, bioavailability and analgesic efficacy. Arzneimittel-Forschung 33(7):985–988PubMedGoogle Scholar
  14. 14.
    Caliskan E, Sener M, Kocum A, Ozyilkan NB, Ezer SS, Aribogan A (2013) The efficacy of intravenous paracetamol versus dipyrone for postoperative analgesia after day-case lower abdominal surgery in children with spinal anesthesia: a prospective randomized double-blind placebo-controlled study. BMC Anesthesiol 13(1):34CrossRefGoogle Scholar
  15. 15.
    Kocum AI, Sener M, Caliskan E, Bozdogan N, Micozkadioglu D, Yilmaz I, Aribogan A (2013) Intravenous paracetamol and dipyrone for postoperative analgesia after day-case tonsillectomy in children: a prospective, randomized, double blind, placebo controlled study. Braz J Otorhinolaryngol 79(1):89–94CrossRefGoogle Scholar
  16. 16.
    Sanofi Aventis (Suisse) SA (2017) Novalgin® - Summary of Product Characteristics (SPC). Last updated: November 2017. Accessible via URL Accessed 28 May 2019
  17. 17.
    Balogh A, Melzer K, Ziehl U, Finke G, Voigt L, Hoffmann A (1989) Elimination von Metamizol (Analgin®)-Metaboliten im Kindesalter. Z Klin Med 44(3):213–215Google Scholar
  18. 18.
    Asmardi G, Jamali F (1985) Pharmacokinetics of dipyrone in man; role of the administration route. Eur J Drug Metab Pharmacokinet 10(2):121–125CrossRefGoogle Scholar
  19. 19.
    Luus HG, Meyer BH, Müller FO, Swart KJ, Badian M (1989) Absolute bioavailability of dipyrone film tablets [abstract]. In: Eur J Clin Pharmacoled, ppA240:209.237Google Scholar
  20. 20.
    Wang Y, Jadhav PR, Lala M, Gobburu JV (2012) Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol 52(10):1601–1606CrossRefGoogle Scholar
  21. 21.
    Denney W, Duvvuri S, Buckeridge C (2015) Simple, automatic noncompartmental analysis: the PKNCA R package [abstract]. J Pharmacokinet Pharmacodyn 42(S1):11–107 S165CrossRefGoogle Scholar
  22. 22.
    R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 28 May 2019
  23. 23.
    International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use - ICH (2001) ICH Topic E 11 Clinical Investigation of Medicinal Products in the Paediatric Population. Accessed 18 Aug 2016
  24. 24.
    Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45(9):931–956CrossRefGoogle Scholar
  25. 25.
    Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, Hines RN (2008) Developmental changes in human liver CYP2D6 expression. Drug Metabol Dispos Biol Fate Chem 36(8):1587–1593CrossRefGoogle Scholar
  26. 26.
    Hines RN (2007) Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol 21(4):169–175CrossRefGoogle Scholar
  27. 27.
    Duan P, Wu F, Moore JN, Fisher J, Crentsil V, Gonzalez D, Zhang L, Burckart GJ, Wang J (2019) Assessing CYP2C19 ontogeny in neonates and infants using physiologically based pharmacokinetic models: impact of enzyme maturation versus inhibition. CPT Pharmacometrics Syst Pharmacol 8(3):158–166Google Scholar
  28. 28.
    McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE (2014) PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 24(8):409–425PubMedPubMedCentralGoogle Scholar
  29. 29.
    The International Agranulocytosis and Aplastic Anemia Study (1986) Risks of agranulocytosis and aplastic anemia. A first report of their relation to drug use with special reference to analgesics. JAMA 256(13):1749–1757CrossRefGoogle Scholar
  30. 30.
    Hedenmalm K, Spigset O (2002) Agranulocytosis and other blood dyscrasias associated with dipyrone (metamizole). Eur J Clin Pharmacol 58(4):265–274CrossRefGoogle Scholar
  31. 31.
    Ibanez L, Vidal X, Ballarin E, Laporte JR (2005) Agranulocytosis associated with dipyrone (metamizol). Eur J Clin Pharmacol 60(11):821–829CrossRefGoogle Scholar
  32. 32.
    Blaser LS, Tramonti A, Egger P, Haschke M, Krahenbuhl S, Ratz Bravo AE (2015) Hematological safety of metamizole: retrospective analysis of WHO and Swiss spontaneous safety reports. Eur J Clin Pharmacol 71(2):209–217CrossRefGoogle Scholar
  33. 33.
    Stammschulte T, Ludwig WD, Muhlbauer B, Bronder E, Gundert-Remy U (2015) Metamizole (dipyrone)-associated agranulocytosis. An analysis of German spontaneous reports 1990-2012. Eur J Clin Pharmacol 71(9):1129–1138CrossRefGoogle Scholar
  34. 34.
    Ziesenitz VC, Erb TO, Trachsel D, van den Anker JN (2018) Safety of dipyrone (metamizole) in children-what’s the risk of agranulocytosis? Paediatr Anaesth 28(2):186–187CrossRefGoogle Scholar
  35. 35.
    Fieler M, Eich C, Becke K, Badelt G, Leimkuhler K, Messroghli L, Boethig D, Sumpelmann R (2015) Metamizole for postoperative pain therapy in 1177 children: a prospective, multicentre, observational, postauthorisation safety study. Eur J Anaesthesiol 32(12):839–843Google Scholar
  36. 36.
    Stueber T, Buessecker L, Leffler A, Gillmann HJ (2017) The use of dipyrone in the ICU is associated with acute kidney injury: a retrospective cohort analysis. Eur J Anaesthesiol 34(10):673–680CrossRefGoogle Scholar
  37. 37.
    Stamer UM, Gundert-Remy U, Biermann E, Erlenwein J, Meibetaner W, Wirz S, Stammschulte T (2017) Dipyrone (metamizole) : considerations on monitoring for early detection of agranulocytosis. Schmerz 31(1):5–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Victoria C. Ziesenitz
    • 1
    • 2
  • Frédérique Rodieux
    • 1
    • 3
  • Andrew Atkinson
    • 1
    • 4
  • Carole Borter
    • 1
  • Julia A. Bielicki
    • 1
    • 5
  • Manuel Haschke
    • 6
    • 7
  • Urs Duthaler
    • 8
  • Fabio Bachmann
    • 8
  • Thomas O. Erb
    • 9
  • Nicolas Gürtler
    • 10
  • Stefan Holland-Cunz
    • 11
  • Johannes N. van den Anker
    • 1
    • 12
  • Verena Gotta
    • 1
    • 13
    Email author
  • Marc Pfister
    • 1
  1. 1.Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB)University of BaselBaselSwitzerland
  2. 2.Pediatric and Congenital CardiologyUniversity Children’s Hospital HeidelbergHeidelbergGermany
  3. 3.Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency MedicineGeneva University HospitalsGenevaSwitzerland
  4. 4.Department of Infectious DiseasesUniversity Hospital BernBernSwitzerland
  5. 5.Pediatric Infectious Diseases, University Children’s Hospital Basel (UKBB)University of BaselBaselSwitzerland
  6. 6.Clinical Pharmacology and Toxicology, Department of General Internal MedicineInselspital, University HospitalBernSwitzerland
  7. 7.Institute of PharmacologyUniversity of BernBernSwitzerland
  8. 8.Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical ResearchUniversity and University Hospital of BaselBaselSwitzerland
  9. 9.Pediatric Anesthesiology, University Children’s Hospital Basel (UKBB)University of BaselBaselSwitzerland
  10. 10.Department of Otolaryngology, Head and Neck Surgery, University Hospital BaselUniversity of BaselBaselSwitzerland
  11. 11.Pediatric Surgery, University Children’s Hospital Basel (UKBB)University of BaselBaselSwitzerland
  12. 12.Division of Clinical PharmacologyChildren’s National Health SystemWashingtonUSA
  13. 13.Hospital PharmacyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations