Advertisement

Influence of body weight and UGT2B7 polymorphism on varenicline exposure in a cohort of smokers from the general population

  • Anaïs Glatard
  • Monia Guidi
  • Maria Dobrinas
  • Jacques Cornuz
  • Chantal CsajkaEmail author
  • Chin B. EapEmail author
Pharmacokinetics and Disposition
  • 32 Downloads

Abstract

Purpose

The abstinence rate to tobacco after varenicline treatment is moderate and might be partially affected by variability in varenicline concentrations. This study aimed at characterizing the sources of variability in varenicline pharmacokinetics and to relate varenicline exposure to abstinence.

Methods

The population pharmacokinetic analysis (NONMEM®) included 121 varenicline concentrations from 82 individuals and tested the influence of genetic and non-genetic characteristics on apparent clearance (CL/F) and volume of distribution (V/F). Model-based average concentrations over 24 h (Cav) were used to test the impact of varenicline exposure on the input rate (Kin) expressed as a function of the number of cigarettes per day in a turnover model of 373 expired carbon monoxide levels.

Results

A one-compartment model with first-order absorption and elimination appropriately described varenicline concentrations. CL/F was 8.5 L/h (coefficient of variation, 26%), V/F was 228 L, and the absorption rate (ka) was fixed to 0.98 h−1. CL/F increased by 46% in 100-kg individuals compared to 60-kg individuals and was found to be 21% higher in UGT2B7 rs7439366 TT individuals. These covariates explained 14% and 9% of the interindividual variability in CL/F, respectively. No influence of varenicline Cav was found on Kin in addition to the number of cigarettes.

Conclusions

Body weight mostly and to a smaller extent genetic polymorphisms of UGT2B7 can influence varenicline exposure. Dose adjustment based on body weight and, if available, on UGT2B7 genotype might be useful to improve clinical efficacy and tolerability of varenicline.

Keywords

Varenicline Pharmacokinetics Pharmacogenetics Dose individualization Variability 

Notes

Acknowledgements

The authors thank Dr. M. Kohler Serra, M. Puhl, and B. Koenig for the enrollment and follow-up of study participants. The authors also thank M. Jonzier-Perey, M. Brocard, A.C. Aubert, A. Kottelat, M. Delessert, N. Cochard, and S. Jaquet for the sample analyses; C. Brogli and V. Hodel for the logistic support; E. Retamales for the help with bibliography; and N. Simon for his input on modeling and stimulating discussions.

Author contribution

Anaïs Glatard wrote the manuscript and analyzed data. Monia Guidi wrote the manuscript and analyzed data. Maria Dobrinas wrote the manuscript, designed the research, and performed the research. Jacques Cornuz wrote the manuscript and designed research. Chantal Csajka wrote the manuscript and analyzed data. Chin B. Eap wrote the manuscript, designed research, and obtained the funds.

Funding

This work was supported by a grant from the Tobacco Prevention Fund, Swiss Federal Office of Public Health (06.004879 to C. B. Eap).

Compliance with ethical standards

The study was approved by the Ethics Committee of the Lausanne University Medical School and by the Swiss Agency for Therapeutic Products (Swissmedic, Bern, Switzerland). Written informed consent was obtained from all participants.

Conflict of interest

CBE received honoraria for conferences or teaching CME courses from Forum für Medizinische Fortbildung, Janssen-Cilag, Lundbeck, Mepha, Otsuka, Sandoz, Servier, Vifor-Pharma, and Zeller during the past 3 years and for writing a review article for the journal Dialogues in clinical neurosciences (Servier). He received an unrestricted educational research grant from Takeda during the past 3 years. All the other authors declare that they have no conflict of interest.

Supplementary material

228_2019_2662_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)
228_2019_2662_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 14 kb)
228_2019_2662_MOESM3_ESM.pdf (174 kb)
ESM 3 (PDF 174 kb)
228_2019_2662_MOESM4_ESM.pdf (218 kb)
ESM 4 (PDF 217 kb)
228_2019_2662_MOESM5_ESM.pdf (217 kb)
ESM 5 (PDF 217 kb)

References

  1. 1.
    Brose LS, West R, Stapleton JA (2013) Comparison of the effectiveness of varenicline and combination nicotine replacement therapy for smoking cessation in clinical practice. Mayo Clin Proc 88(3):226–233.  https://doi.org/10.1016/j.mayocp.2012.11.013 CrossRefGoogle Scholar
  2. 2.
    Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, Billing CB, Gong J, Reeves KR (2006) Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 296(1):56–63.  https://doi.org/10.1001/jama.296.1.56 CrossRefGoogle Scholar
  3. 3.
    Ravva P, Gastonguay MR, French JL, Tensfeldt TG, Faessel HM (2010) Quantitative assessment of exposure-response relationships for the efficacy and tolerability of varenicline for smoking cessation. Clin Pharmacol Ther 87(3):336–344.  https://doi.org/10.1038/clpt.2009.282 CrossRefGoogle Scholar
  4. 4.
    Obach RS, Reed-Hagen AE, Krueger SS, Obach BJ, O’Connell TN, Zandi KS, Miller S, Coe JW (2006) Metabolism and disposition of varenicline, a selective alpha4beta2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab Dispos 34(1):121–130.  https://doi.org/10.1124/dmd.105.006767 CrossRefGoogle Scholar
  5. 5.
    Faessel HM, Obach RS, Rollema H, Ravva P, Williams KE, Burstein AH (2010) A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet 49(12):799–816.  https://doi.org/10.2165/11537850-000000000-00000 CrossRefGoogle Scholar
  6. 6.
    Cheong HS, Kim HD, Na HS, Kim JO, Kim LH, Kim SH, Bae JS, Chung MW, Shin HD (2011) Screening of genetic variations of SLC15A2, SLC22A1, SLC22A2 and SLC22A6 genes. J Hum Genet 56:666–670.  https://doi.org/10.1038/jhg.2011.77 CrossRefGoogle Scholar
  7. 7.
    Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O’Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang SJ, Johnson AD, Dehghan A, Teumer A, Pare G, Atkinson EJ, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tonjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavalieri M, Singleton A, Giallauria F, Metter J, de Boer IH, Haritunians T, Lumley T, Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, Province M, de Andrade M, Turner ST, Schillert A, Ziegler A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig T, Klopp N, Meisinger C, Wichmann HE, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitterlinden AG, Hofman A, Imboden M, Nitsch D, Brandstatter A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Volzke H, Kroemer HK, Nauck M, Volker U, Polasek O, Vitart V, Badola S, Parker AN, Ridker PM, Kardia SL, Blankenberg S, Liu Y, Curhan GC, Franke A, Rochat T, Paulweber B, Prokopenko I, Wang W, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Shlipak MG, van Duijn CM, Borecki I, Kramer BK, Rudan I, Gyllensten U, Wilson JF, Witteman JC, Pramstaller PP, Rettig R, Hastie N, Chasman DI, Kao WH, Heid IM, Fox CS (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42(5):376–384.  https://doi.org/10.1038/ng.568 CrossRefGoogle Scholar
  8. 8.
    Innocenti F, Liu W, Fackenthal D, Ramirez J, Chen P, Ye X, Wu X, Zhang W, Mirkov S, Das S, Cook E Jr, Ratain MJ (2008) Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 18(8):683–697.  https://doi.org/10.1097/FPC.0b013e3283037fe4 CrossRefGoogle Scholar
  9. 9.
    Zhang B, Xie W, Krasowski MD (2008) PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics 9:1695–1709.  https://doi.org/10.2217/14622416.9.11.1695 CrossRefGoogle Scholar
  10. 10.
    Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, Sun C, Cox NJ, Cook E, Das S, Ratain MJ (2014) Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet 23:5558–5569.  https://doi.org/10.1093/hmg/ddu268 CrossRefGoogle Scholar
  11. 11.
    Oda S, Fukami T, Yokoi T, Nakajima M (2015) A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 30:30–51.  https://doi.org/10.1016/j.dmpk.2014.12.001 CrossRefGoogle Scholar
  12. 12.
    Stahl S, Davies MR, Cook DI, Graham MJ (2008) Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica; the fate of foreign compounds in biological systems 38:725–777.  https://doi.org/10.1080/00498250802105593 CrossRefGoogle Scholar
  13. 13.
    Asavapanumas N, Kittayaruksakul S, Meetam P, Muanprasat C, Chatsudthipong V, Soodvilai S (2012) Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARα-independent pathways. Drug Metab Pharmacokinet 27:513–519CrossRefGoogle Scholar
  14. 14.
    Klaassen CD, Slitt AL (2005) Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab 6(4):309–328CrossRefGoogle Scholar
  15. 15.
    Ravva P, Gastonguay MR, Tensfeldt TG, Faessel HM (2009) Population pharmacokinetic analysis of varenicline in adult smokers. Br J Clin Pharmacol 68(5):669–681.  https://doi.org/10.1111/j.1365-2125.2009.03520.x CrossRefGoogle Scholar
  16. 16.
    Benowitz NL, Jacob P 3rd (1994) Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther 56(5):483–493CrossRefGoogle Scholar
  17. 17.
    Jarvis M, Tunstall-Pedoe H, Feyerabend C, Vesey C, Salloojee Y (1984) Biochemical markers of smoke absorption and self reported exposure to passive smoking. J Epidemiol Community Health 38(4):335–339CrossRefGoogle Scholar
  18. 18.
    Verification SSoB (2002) Biochemical verification of tobacco use and cessation. Nicotine Tob Res 4 (2):149–159. doi: https://doi.org/10.1080/14622200210123581
  19. 19.
    West R, Hajek P, Stead L, Stapleton J (2005) Outcome criteria in smoking cessation trials: proposal for a common standard. Addiction 100(3):299–303.  https://doi.org/10.1111/j.1360-0443.2004.00995.x CrossRefGoogle Scholar
  20. 20.
    Etter JF (2005) A self-administered questionnaire to measure cigarette withdrawal symptoms: the Cigarette Withdrawal Scale. Nicotine Tob Res 7(1):47–57.  https://doi.org/10.1080/14622200412331328501 CrossRefGoogle Scholar
  21. 21.
    Dobrinas M, Choong E, Noetzli M, Cornuz J, Ansermot N, Eap CB (2011) Quantification of nicotine, cotinine, trans-3′-hydroxycotinine and varenicline in human plasma by a sensitive and specific UPLC-tandem mass-spectrometry procedure for a clinical study on smoking cessation. J Chromatogr B Anal Technol Biomed Life Sci 879(30):3574–3582.  https://doi.org/10.1016/j.jchromb.2011.09.046 CrossRefGoogle Scholar
  22. 22.
    Jablonski KA, McAteer JB, de Bakker PI, Franks PW, Pollin TI, Hanson RL, Saxena R, Fowler S, Shuldiner AR, Knowler WC, Altshuler D, Florez JC (2010) Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes 59(10):2672–2681.  https://doi.org/10.2337/db10-0543 CrossRefGoogle Scholar
  23. 23.
    Bergen AW, Javitz HS, Krasnow R, Michel M, Nishita D, Conti DV, Edlund CK, Kwok PY, McClure JB, Kim RB, Hall SM, Tyndale RF, Baker TB, Benowitz NL, Swan GE (2014) Organic cation transporter variation and response to smoking cessation therapies. Nicotine Tob Res 16(12):1638–1646.  https://doi.org/10.1093/ntr/ntu161 CrossRefGoogle Scholar
  24. 24.
    Lamba J, Lamba V, Strom S, Venkataramanan R, Schuetz E (2008) Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab Dispos 36:169–181.  https://doi.org/10.1124/dmd.107.016600 CrossRefGoogle Scholar
  25. 25.
    Moon JY, Chang BC, Lee KE, Bang JS, Gwak HS (2015) Effects of pregnane X receptor genetic polymorphisms on stable warfarin doses. J Cardiovasc Pharmacol Ther 20:532–538.  https://doi.org/10.1177/1074248415578906 CrossRefGoogle Scholar
  26. 26.
    Zazuli Z, Barliana MI, Mulyani UA, Perwitasari DA, Ng H, Abdulah R (2015) Polymorphism of PXR gene associated with the increased risk of drug-induced liver injury in Indonesian pulmonary tuberculosis patients. J Clin Pharm Ther 40(6):680–684.  https://doi.org/10.1111/jcpt.12325 CrossRefGoogle Scholar
  27. 27.
    Schipani A, Siccardi M, D’Avolio A, Baietto L, Simiele M, Bonora S, Rodríguez Novoa S, Cuenca L, Soriano V, Chierakul N, Saguenwong N, Chuchuttaworn C, Hoskins JM, Dvorak AM, McLeod HL, Davies G, Khoo S, Back DJ, Di Perri G, Owen A (2010) Population pharmacokinetic modeling of the association between 63396C->T pregnane X receptor polymorphism and unboosted atazanavir clearance. Antimicrob Agents Chemother 54:5242–5250.  https://doi.org/10.1128/AAC.00781-10 CrossRefGoogle Scholar
  28. 28.
    Oliver P, Lubomirov R, Carcas A (2010) Genetic polymorphisms of CYP1A2, CYP3A4, CYP3A5, pregnane/steroid X receptor and constitutive androstane receptor in 207 healthy Spanish volunteers. Clin Chem Lab Med 48:635–639.  https://doi.org/10.1515/CCLM.2010.130 CrossRefGoogle Scholar
  29. 29.
    ElSharawy A, Manaster C, Teuber M, Rosenstiel P, Kwiatkowski R, Huse K, Platzer M, Becker A, Nurnberg P, Schreiber S, Hampe J (2006) SNPSplicer: systematic analysis of SNP-dependent splicing in genotyped cDNAs. Hum Mutat 27(11):1129–1134.  https://doi.org/10.1002/humu.20377 CrossRefGoogle Scholar
  30. 30.
    Oh S-H, Park S-M, Lee YH, Cha JY, Lee J-Y, Shin EK, Park J-S, Park B-L, Shin HD, Park C-S (2009) Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms with the development of asthma. Respir Med 103:1020–1024.  https://doi.org/10.1016/j.rmed.2009.01.015 CrossRefGoogle Scholar
  31. 31.
    Smiderle L, Fiegenbaum M, Hutz MH, Van Der Sand CR, Van Der Sand LC, Ferreira MEW, Pires RC, Almeida S (2015) ESR1 polymorphisms and statin therapy: a sex-specific approach. Pharmacogenomics J 16:507–513.  https://doi.org/10.1038/tpj.2015.60 CrossRefGoogle Scholar
  32. 32.
    Henry NL, Skaar TC, Dantzer J, Li L, Kidwell K, Gersch C, Nguyen AT, Rae JM, Desta Z, Oesterreich S, Philips S, Carpenter JS, Storniolo AM, Stearns V, Hayes DF, Flockhart DA (2013) Genetic associations with toxicity-related discontinuation of aromatase inhibitor therapy for breast cancer. Breast Cancer Res Treat 138:807–816.  https://doi.org/10.1007/s10549-013-2504-3 CrossRefGoogle Scholar
  33. 33.
    Heni M, Wagner R, Ketterer C, Bohm A, Linder K, Machicao F, Machann J, Schick F, Hennige AM, Stefan N, Haring HU, Fritsche A, Staiger H (2013) Genetic variation in NR1H4 encoding the bile acid receptor FXR determines fasting glucose and free fatty acid levels in humans. J Clin Endocrinol Metab 98(7):E1224–E1229.  https://doi.org/10.1210/jc.2013-1177 CrossRefGoogle Scholar
  34. 34.
    Morita K, Saruwatari J, Tanaka T, Oniki K, Kajiwara A, Otake K, Ogata Y, Nakagawa K (2015) Associations between the common HNF1A gene variant p.I27L (rs1169288) and risk of type 2 diabetes mellitus are influenced by weight. Diabetes Metab 41(1):91–94.  https://doi.org/10.1016/j.diabet.2014.04.009 CrossRefGoogle Scholar
  35. 35.
    Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P (2016) Ensembl 2016. Nucleic Acids Res 44(D1):D710–D716.  https://doi.org/10.1093/nar/gkv1157 CrossRefGoogle Scholar
  36. 36.
    Kang HJ, Song IS, Shin HJ, Kim WY, Lee CH, Shim JC, Zhou HH, Lee SS, Shin JG (2007) Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab Dispos 35(4):667–675.  https://doi.org/10.1124/dmd.106.013581 CrossRefGoogle Scholar
  37. 37.
    Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. Icon Development Solutions, Ellicott City, MD, USA, pp 1989–2009Google Scholar
  38. 38.
    Lindbom L, Pihlgren P, Jonsson EN, Jonsson N (2005) PsN-Toolkit--a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Prog Biomed 79:241–257.  https://doi.org/10.1016/j.cmpb.2005.04.005 CrossRefGoogle Scholar
  39. 39.
    Benowitz NL (1996) Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev 18(2):188–204CrossRefGoogle Scholar
  40. 40.
    Stevens LA, Manzi J, Levey AS, Chen J, Deysher AE, Greene T, Poggio ED, Schmid CH, Steffes MW, Zhang YL, Van Lente F, Coresh J (2007) Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 50(1):21–35.  https://doi.org/10.1053/j.ajkd.2007.04.004 CrossRefGoogle Scholar
  41. 41.
    Brendel K, Comets E, Laffont C, Laveille C, Mentré F (2006) Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res 23:2036–2049.  https://doi.org/10.1007/s11095-006-9067-5 CrossRefGoogle Scholar
  42. 42.
    Faessel HM, Gibbs MA, Clark DJ, Rohrbacher K, Stolar M, Burstein AH (2006) Multiple-dose pharmacokinetics of the selective nicotinic receptor partial agonist, varenicline, in healthy smokers. J Clin Pharmacol 46(12):1439–1448.  https://doi.org/10.1177/0091270006292624 CrossRefGoogle Scholar
  43. 43.
    Savic RM, Karlsson MO (2009) Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J 11(3):558–569.  https://doi.org/10.1208/s12248-009-9133-0 CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Faessel H, Ravva P, Williams K (2009) Pharmacokinetics, safety, and tolerability of varenicline in healthy adolescent smokers: a multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 31(1):177–189.  https://doi.org/10.1016/j.clinthera.2009.01.003 CrossRefGoogle Scholar
  46. 46.
    Sawyer MB, Innocenti F, Das S, Cheng C, Ramirez J, Pantle-Fisher FH, Wright C, Badner J, Pei D, Boyett JM, Cook E Jr, Ratain MJ (2003) A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther 73(6):566–574.  https://doi.org/10.1016/s0009-9236(03)00053-5 CrossRefGoogle Scholar
  47. 47.
    Klepstad P, Dale O, Skorpen F, Borchgrevink PC, Kaasa S (2005) Genetic variability and clinical efficacy of morphine. Acta Anaesthesiol Scand 49(7):902–908.  https://doi.org/10.1111/j.1399-6576.2005.00772.x CrossRefGoogle Scholar
  48. 48.
    Nielsen LM, Sverrisdottir E, Stage TB, Feddersen S, Brosen K, Christrup LL, Drewes AM, Olesen AE (2017) Lack of genetic association between OCT1, ABCB1, and UGT2B7 variants and morphine pharmacokinetics. Eur J Pharm Sci 99:337–342.  https://doi.org/10.1016/j.ejps.2016.12.039 CrossRefGoogle Scholar
  49. 49.
    Gardner-Stephen D, Heydel JM, Goyal A, Lu Y, Xie W, Lindblom T, Mackenzie P, Radominska-Pandya A (2004) Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression. Drug Metab Dispos 32(3):340–347.  https://doi.org/10.1124/dmd.32.3.340 CrossRefGoogle Scholar
  50. 50.
    Yueh MF, Mellon PL, Tukey RH (2011) Inhibition of human UGT2B7 gene expression in transgenic mice by the constitutive androstane receptor. Mol Pharmacol 79(6):1053–1060.  https://doi.org/10.1124/mol.110.070649 CrossRefGoogle Scholar
  51. 51.
    Maeda T, Oyabu M, Yotsumoto T, Higashi R, Nagata K, Yamazoe Y, Tamai I (2007) Effect of pregnane X receptor ligand on pharmacokinetics of substrates of organic cation transporter Oct1 in rats. Drug Metab Dispos 35:1580–1586.  https://doi.org/10.1124/dmd.107.015842 CrossRefGoogle Scholar
  52. 52.
    Jimenez-Ruiz CA, Barrios M, Pena S, Cicero A, Mayayo M, Cristobal M, Perera L (2013) Increasing the dose of varenicline in patients who do not respond to the standard dose. Mayo Clin Proc 88(12):1443–1445.  https://doi.org/10.1016/j.mayocp.2013.08.015 CrossRefGoogle Scholar
  53. 53.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of CeryUniversity of LausannePrillySwitzerland
  2. 2.Service of Clinical Pharmacology, Department of Laboratories, Lausanne University HospitalUniversity of LausanneLausanneSwitzerland
  3. 3.School of Pharmaceutical Sciences, University of GenevaUniversity of LausanneGenevaSwitzerland
  4. 4.Department of Ambulatory Care and Community MedicineUniversity of LausanneLausanneSwitzerland

Personalised recommendations