Advertisement

Relationship between hemoglobin levels and vancomycin clearance in patients with sepsis

  • Masayuki Chuma
  • Makoto MakishimaEmail author
  • Toru Imai
  • Naohiro Tochikura
  • Shinichiro Suzuki
  • Tsukasa Kuwana
  • Nami Sawada
  • So Iwabuchi
  • Masao Sekimoto
  • Takahiro Nakayama
  • Takako Sakaue
  • Norikazu Kikuchi
  • Yoshikazu Yoshida
  • Kosaku Kinoshita
Pharmacokinetics and Disposition

Abstract

Purpose

It is important to accurately estimate accurate vancomycin (VCM) clearance (CLvcm) for appropriate VCM dosing in the treatment of patients with sepsis. However, the pathophysiology of sepsis can make CLvcm prediction less accurate. Clearance of hydrophilic antibiotics is disturbed by organ dysfunction, and hemoglobin levels are negatively correlated with sequential organ function assessment scores. We investigated whether hemoglobin levels are associated with CLvcm in sepsis patients.

Methods

We performed a retrospective cohort study of patients treated with VCM in the Emergency and Critical Care Center of Nihon University Itabashi Hospital between 2005 and 2015. We enrolled 72 patients after exclusion of patients who received renal replacement therapy or surgery, had a change in hemoglobin levels more than 2 g/dL or received an erythrocyte infusion during the interval between initial VCM administration and measurement of initial trough levels, had a serum baseline creatinine level of ≥ 2 mg/dL, or were under 18 years old.

Results

Enrolled patients consisted of 13 non-sepsis patients and 59 sepsis patients. In sepsis patients, although CLvcm was correlated with CrCl in HGB ≥ 9 group as well as in non-sepsis patients, its correlation was not observed in HGB < 9 group. Hemoglobin levels were correlated with CLvcm in sepsis patients but not in non-sepsis patient. Multiple linear regression analysis also indicated that lower CLvcm was associated with lower hemoglobin and CrCl.

Conclusion

Lower hemoglobin levels influence a relationship between CLvcm and CrCl in sepsis patients. We propose that VCM dosing should be adjusted for hemoglobin levels in sepsis patients.

Keywords

Sepsis Hemoglobin Vancomycin clearance Therapeutic drug monitoring 

Notes

Acknowledgements

The authors thank Dr. Kazutaka Oda of Kumamoto University Hospital and Ms. Mizuho Asada of Medical Hospital, Tokyo Medical and Dental University for the helpful advice on the pharmacokinetic analysis and Dr. Andrew I. Shulman for the editorial assistance. This study was presented in part at the 66th meeting of the West Japan Branch of the Japanese Society of Chemotherapy on November 17, 2018, at Kagoshima, Japan, and Masayuki Chuma received the 13th Incentive Award in the Category of Clinical Research Conferred by the Director of the West Japan Branch of the Japanese Society of Chemotherapy. This work was supported by funds from Nihon University School of Medicine.

Authors’ contribution

All authors contributed to the study design: M.C., S.S., T.K., N.S., S.I., T.S, N.K., and Y.Y. were involved in the data acquisition and analysis; M.C. and M.M. interpreted the data; M.C., M.M., T.I, N.T., T.K., N.S., M.S., T.N., N.K., Y.Y., and K.K. contributed to the drafting of the manuscript; and all authors approved the manuscript for submission.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

228_2019_2661_MOESM1_ESM.pdf (42 kb)
ESM 1 (PDF 41 kb)

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):801–810.  https://doi.org/10.1001/jama.2016.0287 CrossRefGoogle Scholar
  2. 2.
    Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):775–787.  https://doi.org/10.1001/jama.2016.0289 CrossRefGoogle Scholar
  3. 3.
    Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6):1589–1596.  https://doi.org/10.1097/01.CCM.0000217961.75225.E9 CrossRefGoogle Scholar
  4. 4.
    Oda S, Aibiki M, Ikeda T, Imaizumi H, Endo S, Ochiai R, Kotani J, Shime N, Nishida O, Noguchi T, Matsuda N, Hirasawa H (2014) The Japanese guidelines for the management of sepsis. J Intensive Care 2(1):55.  https://doi.org/10.1186/s40560-014-0055-2 CrossRefGoogle Scholar
  5. 5.
    Matsumoto K, Takesue Y, Ohmagari N, Mochizuki T, Mikamo H, Seki M, Takakura S, Tokimatsu I, Takahashi Y, Kasahara K, Okada K, Igarashi M, Kobayashi M, Hamada Y, Kimura M, Nishi Y, Tanigawara Y, Kimura T (2013) Practice guidelines for therapeutic drug monitoring of vancomycin: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J Infect Chemother 19(3):365–380.  https://doi.org/10.1007/s10156-013-0599-4 CrossRefGoogle Scholar
  6. 6.
    Wong-Beringer A, Joo J, Tse E, Beringer P (2011) Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents 37(2):95–101.  https://doi.org/10.1016/j.ijantimicag.2010.10.013 CrossRefGoogle Scholar
  7. 7.
    Shimamoto Y, Fukuda T, Tanaka K, Komori K, Sadamitsu D (2013) Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis. Intensive Care Med 39(7):1247–1252.  https://doi.org/10.1007/s00134-013-2909-9 CrossRefGoogle Scholar
  8. 8.
    Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37(3):840–851.  https://doi.org/10.1097/CCM.0b013e3181961bff CrossRefGoogle Scholar
  9. 9.
    Blot SI, Pea F, Lipman J (2014) The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev 77:3–11.  https://doi.org/10.1016/j.addr.2014.07.006 CrossRefGoogle Scholar
  10. 10.
    Chuma M, Makishima M, Imai T, Tochikura N, Sakaue T, Kikuchi N, Kinoshita K, Kaburaki M, Yoshida Y (2016) Duration of systemic inflammatory response syndrome influences serum vancomycin concentration in patients with sepsis. Clin Ther 38(12):2598–2609.  https://doi.org/10.1016/j.clinthera.2016.10.009 CrossRefGoogle Scholar
  11. 11.
    Nguyen BV, Bota DP, Melot C, Vincent JL (2003) Time course of hemoglobin concentrations in nonbleeding intensive care unit patients. Crit Care Med 31(2):406–410.  https://doi.org/10.1097/01.CCM.0000048623.00778.3F CrossRefGoogle Scholar
  12. 12.
    Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, Lundy D, Nelson T, Trzeciak SW, Jones AE (2011) The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care 15(5):R223.  https://doi.org/10.1186/cc10463 CrossRefGoogle Scholar
  13. 13.
    Kopterides P, Theodorakopoulou M, Nikitas N, Ilias I, Vassiliadi DA, Orfanos SE, Tsangaris I, Maniatis NA, Tsantes AE, Travlou A, Dimitriadis G, Armaganidis A, Ungerstedt U, Dimopoulou I (2012) Red blood cell transfusion affects microdialysis-assessed interstitial lactate/pyruvate ratio in critically ill patients with late sepsis. Intensive Care Med 38(11):1843–1850.  https://doi.org/10.1007/s00134-012-2635-8 CrossRefGoogle Scholar
  14. 14.
    Chuma M, Makishima M, Imai T, Tochikura N, Suzuki S, Kuwana T, Sawada N, Komatsu T, Sakaue T, Kikuchi N, Yoshida Y, Kinoshita K (2018) Relationship between initial vancomycin trough levels and early-onset vancomycin-associated nephrotoxicity in critically ill patients. Ther Drug Monit 40(1):109–114.  https://doi.org/10.1097/FTD.0000000000000459 Google Scholar
  15. 15.
    Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL (2009) Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 49(4):507–514.  https://doi.org/10.1086/600884 CrossRefGoogle Scholar
  16. 16.
    Thavendiranathan P, Bagai A, Ebidia A, Detsky AS, Choudhry NK (2005) Do blood tests cause anemia in hospitalized patients? The effect of diagnostic phlebotomy on hemoglobin and hematocrit levels. J Gen Intern Med 20(6):520–524.  https://doi.org/10.1111/j.1525-1497.2005.0094.x CrossRefGoogle Scholar
  17. 17.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13(10):818–829CrossRefGoogle Scholar
  18. 18.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22(7):707–710CrossRefGoogle Scholar
  19. 19.
    Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, Nebrich L, Nibro HL, Rasmussen BS, Lauridsen JR, Nielsen JS, Oldner A, Pettila V, Cronhjort MB, Andersen LH, Pedersen UG, Reiter N, Wiis J, White JO, Russell L, Thornberg KJ, Hjortrup PB, Muller RG, Moller MH, Steensen M, Tjader I, Kilsand K, Odeberg-Wernerman S, Sjobo B, Bundgaard H, Thyo MA, Lodahl D, Maerkedahl R, Albeck C, Illum D, Kruse M, Winkel P, Perner A (2014) Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 371(15):1381–1391.  https://doi.org/10.1056/NEJMoa1406617 CrossRefGoogle Scholar
  20. 20.
    Yasuhara M, Iga T, Zenda H, Okumura K, Oguma T, Yano Y, Hori R (1998) Population pharmacokinetics of vancomycin in Japanese adult patients. Ther Drug Monit 20(2):139–148CrossRefGoogle Scholar
  21. 21.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41CrossRefGoogle Scholar
  22. 22.
    Hiraki Y, Onga T, Mizoguchi A, Tsuji Y (2010) Investigation of the prediction accuracy of vancomycin concentrations determined by patient-specific parameters as estimated by Bayesian analysis. J Clin Pharm Ther 35(5):527–532.  https://doi.org/10.1111/j.1365-2710.2009.01126.x CrossRefGoogle Scholar
  23. 23.
    Yamaoka K, Nakagawa T, Tanaka H, Yasuhara M, Okumura K, Hori R (1985) A nonlinear multiple regression program, MULTI2 (BAYES), based on Bayesian algorithm for microcomputers. J Pharmacobiodyn 8(4):246–256CrossRefGoogle Scholar
  24. 24.
    Shimamoto Y, Fukuda T, Tominari S, Fukumoto K, Ueno K, Dong M, Tanaka K, Shirasaka T, Komori K (2013) Decreased vancomycin clearance in patients with congestive heart failure. Eur J Clin Pharmacol 69(3):449–457.  https://doi.org/10.1007/s00228-012-1340-4 CrossRefGoogle Scholar
  25. 25.
    Ohnishi A, Yano Y, Shimamura K, Oguma T (2001) Evaluation of Bayesian predictability of vancomycin concentration in patients with various degrees of renal function. Biol Pharm Bull 24(12):1446–1450CrossRefGoogle Scholar
  26. 26.
    Revilla N, Martin-Suarez A, Perez MP, Gonzalez FM, Fernandez de Gatta Mdel M (2010) Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol 70(2):201–212.  https://doi.org/10.1111/j.1365-2125.2010.03679.x CrossRefGoogle Scholar
  27. 27.
    Maldonado G, Greenland S (1993) Simulation study of confounder-selection strategies. Am J Epidemiol 138(11):923–936CrossRefGoogle Scholar
  28. 28.
    Sheiner LB, Beal SL (1981) Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 9(4):503–512CrossRefGoogle Scholar
  29. 29.
    Shander A (2004) Anemia in the critically ill. Crit Care Clin 20(2):159–178.  https://doi.org/10.1016/j.ccc.2004.01.002 CrossRefGoogle Scholar
  30. 30.
    Raimundo M, Crichton S, Syed Y, Martin JR, Beale R, Treacher D, Ostermann M (2015) Low systemic oxygen delivery and BP and risk of progression of early AKI. Clin J Am Soc Nephrol 10(8):1340–1349.  https://doi.org/10.2215/CJN.02780314 CrossRefGoogle Scholar
  31. 31.
    Armstrong BA, Betzold RD, May AK (2017) Sepsis and septic shock strategies. Surg Clin North Am 97(6):1339–1379.  https://doi.org/10.1016/j.suc.2017.07.003 CrossRefGoogle Scholar
  32. 32.
    Kumar S, Gupta E, Kaushik S, Kumar Srivastava V, Mehta SK, Jyoti A (2018) Evaluation of oxidative stress and antioxidant status: correlation with the severity of sepsis. Scand J Immunol 87(4):e12653.  https://doi.org/10.1111/sji.12653 CrossRefGoogle Scholar
  33. 33.
    Zafrani L, Ergin B, Kapucu A, Ince C (2016) Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit Care 20(1):406.  https://doi.org/10.1186/s13054-016-1581-1 CrossRefGoogle Scholar
  34. 34.
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181–H2190.  https://doi.org/10.1152/ajpheart.00554.2011 CrossRefGoogle Scholar
  35. 35.
    Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, Green MS (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356(9237):1213–1218.  https://doi.org/10.1016/s0140-6736(00)02783-5 CrossRefGoogle Scholar
  36. 36.
    Harada H, Miyagawa S, Kawasaki S, Hayashi K, Kitamura H, Katsuyama Y, Atobe O, Tada A, Zenda H, Oguma T (1999) Study of the pharmacokinetics of vancomycin in patients with impaired liver function. J Infect Chemother 5(2):104–107.  https://doi.org/10.1007/s101560050018 CrossRefGoogle Scholar
  37. 37.
    Bragadottir G, Redfors B, Ricksten SE (2013) Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury—true GFR versus urinary creatinine clearance and estimating equations. Crit Care 17(3):R108.  https://doi.org/10.1186/cc12777 CrossRefGoogle Scholar
  38. 38.
    Carlier M, Dumoulin A, Janssen A, Picavet S, Vanthuyne S, Van Eynde R, Vanholder R, Delanghe J, De Schoenmakere G, De Waele JJ, Hoste EA (2015) Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med 41(3):427–435.  https://doi.org/10.1007/s00134-014-3641-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Masayuki Chuma
    • 1
    • 2
  • Makoto Makishima
    • 3
    Email author
  • Toru Imai
    • 1
  • Naohiro Tochikura
    • 1
  • Shinichiro Suzuki
    • 1
  • Tsukasa Kuwana
    • 4
  • Nami Sawada
    • 4
  • So Iwabuchi
    • 1
  • Masao Sekimoto
    • 1
  • Takahiro Nakayama
    • 1
  • Takako Sakaue
    • 1
  • Norikazu Kikuchi
    • 5
  • Yoshikazu Yoshida
    • 1
  • Kosaku Kinoshita
    • 4
  1. 1.Department of PharmacyNihon University Itabashi HospitalTokyoJapan
  2. 2.Clinical Trial Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
  3. 3.Division of Biochemistry, Department of Biomedical SciencesNihon University School of MedicineTokyoJapan
  4. 4.Division of Emergency and Critical Care Medicine, Department of Acute MedicineNihon University School of MedicineTokyoJapan
  5. 5.Department of PharmacyNihon University HospitalTokyoJapan

Personalised recommendations