Advertisement

European Journal of Clinical Pharmacology

, Volume 75, Issue 2, pp 179–187 | Cite as

Drug incompatibilities in intravenous therapy: evaluation and proposition of preventive tools in intensive care and hematology units

  • Ophélie MaisonEmail author
  • Cléa Tardy
  • Delphine Cabelguenne
  • Stéphanie Parat
  • Sophie Ducastelle
  • Vincent Piriou
  • Alain Lepape
  • Laure Lalande
Pharmacodynamics
  • 176 Downloads

Abstract

Purpose

Physicochemical incompatibility (PCI) between drugs infused together is frequent, but under-recognized. PCI can lead to drug inactivity, catheter occlusion, embolism or inflammatory reactions. The aims of this work were to identify most frequent and relevant drug incompatibilities and to review and develop strategies for their prevention.

Method

This was an observational prospective survey conducted between January and March 2015 in an intensive care unit (ICU) and in September 2014 in a hematology sterile unit (HSU). Drugs administered to patients were recorded and their compatibility assessed based on published compatibility data.

Results

Drug incompatibilities accounted for 12% (23/189) and 17% (116/686) of drug pairs infused in the ICU and the HSU, respectively. Pantoprazole was the most frequent drug implied in PCI. Regarding drug classes, anti-infective agents and gastrointestinal drugs were the most frequently implied. Among the incompatible pairs, 78% and 61% implicated a drug with extreme pH in the ICU and HSU, respectively. The tools proposed to reduce the frequency of PCI included: compatibility cross-tables, labeling of drugs with extreme pH and optimized administration schedules.

Conclusions

Given the frequency and the potential for severe consequences of PCI, pharmacists have a role to play in raising awareness of nurses and practitioners, and proposing adequate tools and solutions to reduce their incidence.

Keywords

Drug incompatibilities Intravenous therapy Adverse drug events prevention Pharmacist Intensive care unit 

Notes

Acknowledgments

Marion Nouvel, Anne-Gaëlle Caffin, Géraldine Iroir, Bérengère Clerc, Carole Dugrenier, Corinne Béal, Gilles Salles, Catherine Rioufol.

Supplementary material

228_2018_2602_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 21 kb)

References

  1. 1.
    Newton DW (2009) Drug incompatibility chemistry. Am J Health Syst Pharm 66:348–357.  https://doi.org/10.2146/ajhp080059 CrossRefGoogle Scholar
  2. 2.
    Chantelau E, Lange G, Gasthaus M et al (1987) Interaction between plastic catheter tubings and regular insulin preparations used for continuous subcutaneous insulin-infusion therapy. Diabetes Care 10:348–351CrossRefGoogle Scholar
  3. 3.
    Vueba ML, Veiga F, Sousa JJ, Pina ME (2005) Compatibility studies between ibuprofen or ketoprofen with cellulose ether polymer mixtures using thermal analysis. Drug Dev Ind Pharm 31:943–949.  https://doi.org/10.1080/03639040500306153 CrossRefGoogle Scholar
  4. 4.
    Jack T, Boehne M, Brent BE et al (2012) In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med 38:1008–1016.  https://doi.org/10.1007/s00134-012-2539-7 CrossRefGoogle Scholar
  5. 5.
    Boehne M, Jack T, Köditz H et al (2013) In-line filtration minimizes organ dysfunction: new aspects from a prospective, randomized, controlled trial. BMC Pediatr 13:21.  https://doi.org/10.1186/1471-2431-13-21 CrossRefGoogle Scholar
  6. 6.
    McNearney T, Bajaj C, Boyars M et al (2003) Total parenteral nutrition associated crystalline precipitates resulting in pulmonary artery occlusions and alveolar granulomas. Dig Dis Sci 48:1352–1354CrossRefGoogle Scholar
  7. 7.
    Monte SV, Prescott WA, Johnson KK et al (2008) Safety of ceftriaxone sodium at extremes of age. Expert Opin Drug Saf 7:515–523.  https://doi.org/10.1517/14740338.7.5.515 CrossRefGoogle Scholar
  8. 8.
    Hill SE, Heldman LS, Goo ED et al (1996) Fatal microvascular pulmonary emboli from precipitation of a total nutrient admixture solution. JPEN J Parenter Enteral Nutr 20:81–87.  https://doi.org/10.1177/014860719602000181 CrossRefGoogle Scholar
  9. 9.
    Hardy G, Ball P (2005) Clogbusting: time for a concerted approach to catheter occlusions? Curr Opin Clin Nutr Metab Care 8:277–283CrossRefGoogle Scholar
  10. 10.
    Lumpkin MM (1994) Safety alert: hazards of precipitation associated with parenteral nutrition. Am J Hosp Pharm 51:1427–1428Google Scholar
  11. 11.
    Research Center for Drug Evaluation and Information for Healthcare Professionals: Ceftriaxone (marketed as Rocephin) 9/2007. https://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm134328.htm. Accessed 24 Oct 2017
  12. 12.
    Infostab Stabilis 4.0. http://www.stabilis.org/. Accessed 24 Oct 2017
  13. 13.
    CNHIM Thériaque. http://www.theriaque.org/apps/contenu/accueil.php. Accessed 24 Oct 2017
  14. 14.
    Trissel LA (2013) Handbook on injectable drugs, 17th edn. American Soc. of Health-System Pharmacists, BethesdaGoogle Scholar
  15. 15.
    Cayo L (2011) Compatibility of commonly used IV drugs. Pharm Pract News 67–72Google Scholar
  16. 16.
    Hôpitaux Universitaires de Genève (2012) Compatibilités des médicaments injectables administrés en Y. https://pharmacie.hug-ge.ch/infomedic/utilismedic/HUG_CompatAdm_DCI.pdf. Accessed 24 Oct 2017
  17. 17.
    Neveu N (2012) Administrations parentérales en Unité d’Hématologie Soins Intensifs: incompatibilités physico-chimiques et optimisations. PharmD, Université Joseph Fourier - Faculté de Pharmacie de GrenobleGoogle Scholar
  18. 18.
    Vogel Kahmann I, Bärki R, Denzler U et al (2003) Inkompatibilitätsreaktionen auf der Intensivstation. Anaesthesist 52:409–412.  https://doi.org/10.1007/s00101-003-0481-3 CrossRefGoogle Scholar
  19. 19.
    Kanji S, Lam J, Goddard RD et al (2013) Inappropriate medication administration practices in Canadian adult ICUs: a multicenter, cross-sectional observational study. Ann Pharmacother 47:637–643.  https://doi.org/10.1345/aph.1R414 CrossRefGoogle Scholar
  20. 20.
    Brodlie P, Henney C, Wood AJ (1974) Problems of administering drugs by continuous infusion. Br Med J 1:383–385CrossRefGoogle Scholar
  21. 21.
    Marsilio NR, da Silva D, Bueno D (2016) Drug incompatibilities in the adult intensive care unit of a university hospital. Rev Bras Ter Intensiva 28:147–153.  https://doi.org/10.5935/0103-507X.20160029 CrossRefGoogle Scholar
  22. 22.
    Bertsche T, Mayer Y, Stahl R et al (2008) Prevention of intravenous drug incompatibilities in an intensive care unit. Am J Health Syst Pharm 65:1834–1840.  https://doi.org/10.2146/ajhp070633 CrossRefGoogle Scholar
  23. 23.
    Longuet P, Lecapitaine AL, Cassard B et al (2016) Preparing and administering injectable antibiotics: how to avoid playing God. Med Mal Infect 46:242–268.  https://doi.org/10.1016/j.medmal.2016.01.010 CrossRefGoogle Scholar
  24. 24.
    Trissel LA (2001) Drug stability and compatibility issues in drug delivery. In: Handbook on injectable drugs, 11th edn. ASHP Publishing Department, BethesdaGoogle Scholar
  25. 25.
    Kanji S, Lam J, Johanson C et al (2010) Systematic review of physical and chemical compatibility of commonly used medications administered by continuous infusion in intensive care units. Crit Care Med 38:1890–1898.  https://doi.org/10.1097/CCM.0b013e3181e8adcc CrossRefGoogle Scholar
  26. 26.
    Trissel LA (1996) Everything in a compatibility study is important. Am J Health Syst Pharm 53:2990Google Scholar
  27. 27.
    Hadaway LC (2005) Administering parenteral nutrition with other I.V. drugs. Nursing (Lond) 35:26CrossRefGoogle Scholar
  28. 28.
    Zürcher M, Tramèr MR, Walder B (2004) Colonization and bloodstream infection with single- versus multi-lumen central venous catheters: a quantitative systematic review. Anesth Analg 99:177–182CrossRefGoogle Scholar
  29. 29.
    Maki DG, Kluger DM, Crnich CJ (2006) The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 81:1159–1171.  https://doi.org/10.4065/81.9.1159 CrossRefGoogle Scholar
  30. 30.
    McGee DC, Gould MK (2003) Preventing complications of central venous catheterization. N Engl J Med 348:1123–1133.  https://doi.org/10.1056/NEJMra011883 CrossRefGoogle Scholar
  31. 31.
    Perez M, Décaudin B, Foinard A et al (2015) Compatibility of medications during multi-infusion therapy: a controlled in vitro study on a multilumen infusion device. Anaesth Crit Care Pain Med 34:83–88.  https://doi.org/10.1016/j.accpm.2014.06.003 CrossRefGoogle Scholar
  32. 32.
    Camut A, Noirez V, Gustin B, Khalife A (2007) Improvement of antibiotics infusion practices: proposition and evaluation of a good practices’ guide. J Pharm Clin 26:143–150.  https://doi.org/10.1684/jpc.2007.0059 Google Scholar
  33. 33.
    Huddleston J, Hay L, Everett JA (2000) Patient-specific compatibility tables for the pediatric intensive care unit. Am J Health Syst Pharm 57:2284–2285Google Scholar
  34. 34.
    Roche VF (2007) Improving pharmacy students’ understanding and long-term retention of acid-base chemistry. Am J Pharm Educ 71:122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacy, Groupement Hospitalier SudHospices Civils de LyonPierre BéniteFrance
  2. 2.Department of Hematology Oncology, Groupement Hospitalier SudHospices Civils de LyonPierre BéniteFrance
  3. 3.Department of Critical Care, Groupement Hospitalier SudHospices Civils de LyonPierre BéniteFrance

Personalised recommendations