Advertisement

European Journal of Clinical Pharmacology

, Volume 74, Issue 12, pp 1531–1545 | Cite as

Systematic review of drug bioavailability following gastrointestinal surgery

  • Manuela Moreno Santamaría
  • José Javier Arenas Villafranca
  • Jimena Abilés
  • Alberto Fernández López
  • Lucia Visiedo Rodas
  • Begoña Tortajada Goitia
  • Pilar Utrilla Navarro
Review

Abstract

Purpose

Inter- and intraindividual pharmacokinetics variability in humans affects the way in which drugs act on the body. Gastrointestinal surgery has an impact on this variability and significantly alters the kinetics of drugs in post-surgical patients. The way in which pharmacokinetic profiles are modified depends on the type of operative procedure performed. The extent to which the absorption of different groups of drugs is affected varies according to the site and length of intestinal resections.

Methods

A literature search was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Three databases were searched: MEDLINE, Embase, and the Cochrane Library. For each drug, potential changes in absorption were described, including recommendations extracted from the results of the studies and collected according to authors’ criteria as practical conclusions, and grades of recommendation were determined by levels of evidence using the Oxford Centre for Evidence-Based Medicine scale.

Results

Sixty-eight articles were collected during the selection process after the bibliographic search. The main outcomes for 60 drugs from the various studies were classified according to each type of surgery.

Conclusions

Modifications in the digestive tract secondary to gastrointestinal surgery may compromise the bioavailability of drugs. Decreased absorption surface, gastric emptying speed, and gastric pH alteration are factors to be taken into account in the management of pharmacological treatment after surgery. Evidence supported by data in clinical practice is scarce, but after studying the pharmacokinetic profile of some molecules, it is possible to offer recommendations for its adaptation to the patient’s clinical situation.

Keywords

Gastrointestinal surgery Drug absorption Pharmacokinetics Bioavailability 

Notes

Acknowledgments

We thank the staff of the surgery and pharmacy services at the Costa del Sol Hospital. The present study is part of “Farmacia” PhD research programme being conducted at the University of Granada.

Author contributions

- All authors have made substantial contributions to all of the following:

• Design of the review system.

• Drafting of the article or revising it critically for important intellectual content.

• Final approval of the version to be submitted.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest and that this study was performed in accordance with ethical research guidelines.

Supplementary material

228_2018_2539_MOESM1_ESM.doc (64 kb)
Appendix I (DOC 64.5 kb)
228_2018_2539_MOESM2_ESM.docx (404 kb)
Appendix II (DOCX 404 kb)
228_2018_2539_MOESM3_ESM.doc (128 kb)
Appendix III (DOC 127 kb)

References

  1. 1.
    Murphy JE (ed) (2008) Clinical pharmacokinetics, 4th edn. American Society of Health-System Pharmacists, Bethesda (ISBN 978-1-58528-167-1)Google Scholar
  2. 2.
    Gubbins PO, Bertch KE (1991) Drug absorption in gastrointestinal disease and surgery. Clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet 21(6):431–447 ReviewCrossRefGoogle Scholar
  3. 3.
    Titus R, Kastenmeier A, Otterson MF (2013) Consequences of gastrointestinal surgery on drug absorption. Nutr Clin Pract 28(4):429–436.  https://doi.org/10.1177/0884533613490740 CrossRefPubMedGoogle Scholar
  4. 4.
    Lobenberg R, Amidon GL (2000) Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 50:3–12CrossRefGoogle Scholar
  5. 5.
    Smith A, Henriksen B, Cohen A (2011) Pharmacokinetic considerations in roux-en-Y gastric bypass patients. Am J Health Syst Pharm 68(23):2241–2247.  https://doi.org/10.2146/ajhp100630 CrossRefPubMedGoogle Scholar
  6. 6.
    Baena Y, Ponce D’León LF (2008) Importancia y fundamentación del sistema de clasificación biofarmacéutico, como base de la exención de estudios de biodisponibilidad y bioequivalencia in vivo. Rev Colomb Cienc Quím Farm 37(1):18–32Google Scholar
  7. 7.
    Padwal R, Brocks D, Sharma AM (2010) A systematic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev 11:41–50CrossRefGoogle Scholar
  8. 8.
    Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94CrossRefGoogle Scholar
  9. 9.
    Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BVSSPA) (2018) Sevilla: Consejería de Salud, Fundación Progreso y Salud. [Updated 2018; cited 2018] Available from: http://www.bvsspa.es
  10. 10.
    Bidwell S, Fabricious Jensen M. Etext on Health Technology Assessment (HTA) Information Resources. Chapter 3: Using a Search Protocol to Identify Sources of Information: the COSI Model. National Information Center on Health Services Research and Health Care Technology (NICHSR). 2006. Available from: URL: http://www.nlm.nih.gov/archive/20060905/nichsr/ehta/chapter3.html
  11. 11.
    Oxford Centre for evidence-based medicine- levels of evidence (March 2009). Available from: https://cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/
  12. 12.
    Collares-Pelizaro RVA, Santos JS, Nonino CB, dos Reis Dias LA, Gaitani CM, Salgado W Jr (2017) Omeprazole absorption and fasting Gastrinemia after roux-en-Y gastric bypass. Obes Surg 27(9):2303–2307.  https://doi.org/10.1007/s11695-017-2672-z Erratum in: Obes Surg. 2017 Aug 24;:. Obes Surg. 2017 Dec;27(12):3351CrossRefPubMedGoogle Scholar
  13. 13.
    Mitrov-Winkelmolen L, van Buul-Gast MW, Swank DJ, Overdiek HWPM, van Schaik RHN, Touw DJ (2016) The effect of roux-en-Y gastric bypass surgery in morbidly obese patients on pharmacokinetics of (acetyl) salicylic acid and omeprazole: the ERY-PAO study. Obes Surg 26(9):2051–2058.  https://doi.org/10.1007/s11695-016-2065-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Padwal RS, Gabr RQ, Sharma AM, Langkaas LA, Birch DW, Karmali S, Brocks DR (2011) Effect of gastric bypass surgery on the absorption and bioavailability of metformin. Diabetes Care 34(6):1295–1300.  https://doi.org/10.2337/dc10-2140 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Riedt CS, Brolin RE, Sherrell RM, Field MP, Shapses SA (2006) True fractional calcium absorption is decreased after roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 14(11):1940–1948CrossRefGoogle Scholar
  16. 16.
    Tondapu P, Provost D, Adams-Huet B, Sims T, Chang C, Sakhaee K (2009) Comparison of the absorption of calcium carbonate and calcium citrate after roux-en-Y gastric bypass. Obes Surg 19(9):1256–1261.  https://doi.org/10.1007/s11695-009-9850-6 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sakhaee K, Pak C (2013) Superior calcium bioavailability of effervescent potassium calcium citrate over tablet formulation of calcium citrate after roux-en-Y gastric bypass. Surg Obes Relat Dis 9(5):743–748.  https://doi.org/10.1016/j.soard.2011.11.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Leichtmann GA, Bengoa JM, Bolt MJ, Sitrin MD (1991) Intestinal absorption of cholecalciferol and 25-hydroxycholecalciferol in patients with both Crohn’s disease and intestinal resection. Am J Clin Nutr 54(3):548–552CrossRefGoogle Scholar
  19. 19.
    Sobieraj DM, Wang F, Kirton OC (2008) Warfarin resistance after total gastrectomy and roux-en-Y esophagojejunostomy. Pharmacotherapy 28(12):1537–1541.  https://doi.org/10.1592/phco.28.12.1537 CrossRefPubMedGoogle Scholar
  20. 20.
    Cheung YW, Barco S, Mathôt RAA, van den Dool EJ, Stroobants AK, Serlie MJ, Middeldorp S, Coppens M (2017) Pharmacokinetics of dabigatran etexilate and rivaroxaban in patients with short bowel syndrome requiring parenteral nutrition: the PDERPAN study. Thromb Res 160:76–82.  https://doi.org/10.1016/j.thromres.2017.10.025 CrossRefPubMedGoogle Scholar
  21. 21.
    Mahlmann A, Gehrisch S, Beyer-Westendorf J (2013) Pharmacokinetics of rivaroxaban after bariatric surgery: a case report. J Thromb Thrombolysis 36(4):533–535.  https://doi.org/10.1007/s11239-013-0891-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Kröll D, Stirnimann G, Vogt A, Lai DLL, Borbély YM, Altmeier J, Schädelin S, Candinas D, Alberio L, Nett PC (2017) Pharmacokinetics and pharmacodynamics of single doses of rivaroxaban in obese patients prior to and after bariatric surgery. Br J Clin Pharmacol 83(7):1466–1475.  https://doi.org/10.1111/bcp.13243 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pollak PT, Sun GR, Kim RB (2018) Personalized anticoagulation: guided Apixaban dose adjustment to compensate for pharmacokinetic abnormalities related to short-bowel syndrome. Can J Cardiol 34(3):342.e17–342.e19.  https://doi.org/10.1016/j.cjca.2017.12.021 CrossRefGoogle Scholar
  24. 24.
    Faye E, Drouet L, De Raucourt E, Green A, Bal-Dit-Sollier C, Boudaoud L, Corcos O, Bergmann JF, Joly F, Lloret-Linares C (2014) Absorption and efficacy of acetylsalicylic acid in patients with short bowel syndrome. Ann Pharmacother 48(6):705–710.  https://doi.org/10.1177/1060028014526700 CrossRefPubMedGoogle Scholar
  25. 25.
    Droppa M, Karathanos A, Gawaz M, Geisler T (2015) Individualised dual antiplatelet therapy in a patient with short bowel syndrome after acute myocardial infarction with coronary artery stenting. BMJ Case Rep.  https://doi.org/10.1136/bcr-2014-205227
  26. 26.
    Mimura EC, Breganó JW, Dichi JB, Gregório EP, Dichi I (2008) Comparison of ferrous sulfate and ferrous glycinate chelate for the treatment of iron deficiency anemia in gastrectomized patients. Nutrition 24(7–8):663–668.  https://doi.org/10.1016/j.nut.2008.03.017 CrossRefPubMedGoogle Scholar
  27. 27.
    Marcus FI, Quinn EJ, Horton H, Jacobs S, Pippin S, Stafford M, Zukoski C (1977) The effect of jejunoileal bypass on the pharmacokinetics of digoxin in man. Circulation 55(3):537–541CrossRefGoogle Scholar
  28. 28.
    Ehrenpreis ED, Guerriero S, Nogueras JJ, Carroll MA (1994) Malabsorption of digoxin tablets, gel caps, and elixir in a patient with an end jejunostomy. Ann Pharmacother 28(11):1239–1240CrossRefGoogle Scholar
  29. 29.
    Chan LN, Lin YS, Tay-Sontheimer JC, Trawick D, Oelschlager BK, Flum DR, Patton KK, Shen DD, Horn JR (2015) Proximal roux-en-Y gastric bypass alters drug absorption pattern but not systemic exposure of CYP3A4 and P-glycoprotein substrates. Pharmacotherapy 35(4):361–369.  https://doi.org/10.1002/phar.1560 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wójcicki J, Wojciechowski G, Wójcicki M, Kostyrka R, Sterna R, Gawronska-Szklarz B, Pawlik A, Drozdzik M, Kozlowski K (2000) Pharmacokinetics of propranolol and atenolol in patients after partial gastric resection: a comparative study. Eur J Clin Pharmacol 56(1):75–79CrossRefGoogle Scholar
  31. 31.
    Gesquiere I, Darwich AS, Van der Schueren B, de Hoon J, Lannoo M, Matthys C, Rostami A, Foulon V, Augustijns P (2015) Drug disposition and modelling before and after gastric bypass: immediate and controlled-release metoprolol formulations. Br J Clin Pharmacol 80(5):1021–1030.  https://doi.org/10.1111/bcp.12666 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Skottheim IB, Jakobsen GS, Stormark K, Christensen H, Hjelmesaeth J, Jenssen T, Asberg A, Sandbu R (2010 Jun) Significant increase in systemic exposure of atorvastatin after biliopancreatic diversion with duodenal switch. Clin Pharmacol Ther 87(6):699–705.  https://doi.org/10.1038/clpt.2010.32 CrossRefPubMedGoogle Scholar
  33. 33.
    Skottheim IB, Stormark K, Christensen H, Jakobsen GS, Hjelmesaeth J, Jenssen T, Reubsaet JL, Sandbu R, Asberg A (2009) Significantly altered systemic exposure to atorvastatin acid following gastric bypass surgery in morbidly obese patients. Clin Pharmacol Ther 86(3):311–318.  https://doi.org/10.1038/clpt.2009.82 CrossRefPubMedGoogle Scholar
  34. 34.
    Jakobsen GS, Skottheim IB, Sandbu R, Christensen H, Røislien J, Asberg A, Hjelmesæth J (2013) Long-term effects of gastric bypass and duodenal switch on systemic exposure of atorvastatin. Surg Endosc 27(6):2094–2101.  https://doi.org/10.1007/s00464-012-2716-3 CrossRefPubMedGoogle Scholar
  35. 35.
    Grimmer SF, Back DJ, Orme ML, Cowie A, Gilmore I, Tjia J (1986) The bioavailability of ethinyloestradiol and levonorgestrel in patients with an ileostomy. Contraception 33(1):51–59CrossRefGoogle Scholar
  36. 36.
    Pirola I, Formenti AM, Gandossi E, Mittempergher F, Casella C, Agosti B, Cappelli C (2013) Oral liquid L-thyroxine (L-t4) may be better absorbed compared to L-T4 tablets following bariatric surgery. Obes Surg 23(9):1493–1496.  https://doi.org/10.1007/s11695-013-1015-y CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rubio IG, Galrão AL, Santo MA, Zanini AC, Medeiros-Neto G (2012) Levothyroxine absorption in morbidly obese patients before and after roux-En-Y gastric bypass (RYGB) surgery. Obes Surg 22(2):253–258.  https://doi.org/10.1007/s11695-011-0452-8 CrossRefPubMedGoogle Scholar
  38. 38.
    Gkotsina M, Michalaki M, Mamali I, Markantes G, Sakellaropoulos GC, Kalfarentzos F, Vagenakis AG, Markou KB (2013) Improved levothyroxine pharmacokinetics after bariatric surgery. Thyroid 23(4):414–419.  https://doi.org/10.1089/thy.2011.0526 CrossRefPubMedGoogle Scholar
  39. 39.
    Fallahi P, Ferrari SM, Camastra S, Politti U, Ruffilli I, Vita R, Navarra G, Benvenga S, Antonelli A (2017) TSH normalization in bariatric surgery patients after the switch from L-thyroxine in tablet to an oral liquid formulation. Obes Surg 27(1):78–82.  https://doi.org/10.1007/s11695-016-2247-4 CrossRefPubMedGoogle Scholar
  40. 40.
    De Smet J, Colin P, De Paepe P, Ruige J, Batens H, Van Nieuwenhove Y, Vogelaers D, Blot S, Van Bocxlaer J, Van Bortel LM, Boussery K (2012) Oral bioavailability of moxifloxacin after roux-en-Y gastric bypass surgery. J Antimicrob Chemother 67(1):226–229.  https://doi.org/10.1093/jac/dkr436 CrossRefPubMedGoogle Scholar
  41. 41.
    Padwal RS, Ben-Eltriki M, Wang X, Langkaas LA, Sharma AM, Birch DW, Karmali S, Brocks DR (2012) Effect of gastric bypass surgery on azithromycin oral bioavailability. J Antimicrob Chemother 67(9):2203–2206.  https://doi.org/10.1093/jac/dks177 CrossRefPubMedGoogle Scholar
  42. 42.
    Ochs HR, Greenblatt DJ, Dengler HJ (1978) Absorption of oral tetracycline in patients with Billroth-II gastrectomy. J Pharmacokinet Biopharm 6(4):295–303CrossRefGoogle Scholar
  43. 43.
    Hamilton R, Thai XC, Ameri D, Pai MP (2013) Oral bioavailability of linezolid before and after roux-en-Y gastric bypass surgery: is dose modification necessary in obese subjects? J Antimicrob Chemother 68(3):666–673.  https://doi.org/10.1093/jac/dks431 CrossRefPubMedGoogle Scholar
  44. 44.
    Bergan T, Bjerke PE, Fausa O (1981) Pharmacokinetics of metronidazole in patients with enteric disease compared to normal volunteers. Chemotherapy 27(4):233–238CrossRefGoogle Scholar
  45. 45.
    Muzard L, Alvarez JC, Gbedo C, Czernichow S, Carette C (2017) Tenofovir pharmacokinetic after sleeve-gastrectomy in four severely obese patients living with HIV. Obes Res Clin Pract 11(1):108–113.  https://doi.org/10.1016/j.orcp.2016.06.004 CrossRefPubMedGoogle Scholar
  46. 46.
    MacBrayne CE, Blum JD, Kiser JJ (2014) Tenofovir, emtricitabine, and darunavir/ritonavir pharmacokinetics in an HIV-infected patient after roux-en-Y gastric bypass surgery. Ann Pharmacother 48(6):816–819.  https://doi.org/10.1177/1060028014525034 ReviewCrossRefPubMedGoogle Scholar
  47. 47.
    Kamimura M, Watanabe K, Kobayakawa M, Mihara F, Edamoto Y, Teruya K, Kikuchi Y, Oka S (2009) Successful absorption of antiretroviral drugs after gastrojejunal bypass surgery following failure of therapy through a jejunal tube. Intern Med 48(12):1103–1104CrossRefGoogle Scholar
  48. 48.
    Ikuma M, Watanabe D, Yagura H, Ashida M, Takahashi M, Shibata M, Asaoka T, Yoshino M, Uehira T, Sugiura W, Shirasaka T (2016) Therapeutic drug monitoring of anti-human immunodeficiency virus drugs in a patient with short bowel syndrome. Intern Med 55(20):3059–3063CrossRefGoogle Scholar
  49. 49.
    Johnson SW, Teachey AL, Valanejad SM, Griffin SM, Weber SF (2017) Cure with ledipasvir/sofosbuvir for chronic hepatitis C virus in an individual with gastric bypass. J Clin Pharm Ther 42(5):624–626.  https://doi.org/10.1111/jcpt.12547 CrossRefPubMedGoogle Scholar
  50. 50.
    Taibi C, Tempestilli M, D’Avolio A, Garbuglia AR, De Nicolò A, Montalbano M, D’Offizi G (2017) Efficacy of sofosbuvir and ledipasvir in an HCV+ gastro-resected patient. J Clin Pharm Ther 42(5):621–623.  https://doi.org/10.1111/jcpt.12546.Epub CrossRefPubMedGoogle Scholar
  51. 51.
    Beumer JH, Natale JJ, Lagattuta TF, Raptis A, Egorin MJ (2006) Disposition of imatinib and its metabolite CGP74588 in a patient with chronic myelogenous leukemia and short-bowel syndrome. Pharmacotherapy 26(7):903–907CrossRefGoogle Scholar
  52. 52.
    Pavlovsky C, Egorin MJ, Shah DD, Beumer JH, Rogel S, Pavlovsky S (2009) Imatinib mesylate pharmacokinetics before and after sleeve gastrectomy in a morbidly obese patient with chronic myeloid leukemia. Pharmacotherapy 29(9):1152–1156.  https://doi.org/10.1592/phco.29.9.1152 CrossRefPubMedGoogle Scholar
  53. 53.
    Yoo C, Ryu MH, Kang BW, Yoon SK, Ryoo BY, Chang HM, Lee JL, Beck MY, Kim TW, Kang YK (2010) Cross-sectional study of imatinib plasma trough levels in patients with advanced gastrointestinal stromal tumors: impact of gastrointestinal resection on exposure to imatinib. J Clin Oncol 28(9):1554–1559.  https://doi.org/10.1200/JCO.2009.26.5785 CrossRefPubMedGoogle Scholar
  54. 54.
    de Wit D, van Erp NP, Khosravan R, Wiltshire R, Allred R, Demetri GD, Guchelaar HJ, Gelderblom H (2014 Aug 8) Effect of gastrointestinal resection on sunitinib exposure in patients with GIST. BMC Cancer 14:575.  https://doi.org/10.1186/1471-2407-14-575 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Park DM, Shah DD, Egorin MJ, Beumer JH (2009) Disposition of temozolomide in a patient with glioblastoma multiforme after gastric bypass surgery. J Neuro-Oncol 93(2):279–283.  https://doi.org/10.1007/s11060-008-9773-4 CrossRefGoogle Scholar
  56. 56.
    Rogers CC, Alloway RR, Alexander JW, Cardi M, Trofe J, Vinks AA (2008) Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: a pilot study. Clin Transpl 22(3):281–291.  https://doi.org/10.1111/j.1399-0012.2007.00783.x CrossRefGoogle Scholar
  57. 57.
    Diwan TS, Lichvar AB, Leino AD, Vinks AA, Christians U, Shields AR, Cardi MA, Fukuda T, Mizuno T, Kaiser T, Woodle ES, Alloway RR (2017) Pharmacokinetic and pharmacogenetic analysis of immunosuppressive agents after laparoscopic sleeve gastrectomy. Clin Transplant. 31(6).  https://doi.org/10.1111/ctr.12975 CrossRefGoogle Scholar
  58. 58.
    Kelley M, Jain A, Kashyap R, Orloff M, Abt P, Wrobble K, Venkataramanan R, Bozorgzadeh A (2005) Change in oral absorption of tacrolimus in a liver transplant recipient after reversal of jejunoileal bypass: case report. Transplant Proc 37(7):3165–3167CrossRefGoogle Scholar
  59. 59.
    Novelli M, Muiesan P, Mieli-Vergani G, Dhawan A, Rela M, Heaton ND (1999) Oral absorption of tacrolimus in children with intestinal failure due to short or absent small bowel. Transpl Int 12(6):463–465CrossRefGoogle Scholar
  60. 60.
    Roberts R, Sketris IS, Abraham I, Givner ML, MacDonald AS (1988) Cyclosporine absorption in two patients with short-bowel syndrome. Drug Intell Clin Pharm 22(7–8):570–572CrossRefGoogle Scholar
  61. 61.
    Chenhsu RY, Wu Y, Katz D, Rayhill S (2003) Dose-adjusted cyclosporine c2 in a patient with jejunoileal bypass as compared to seven other liver transplant recipients. Ther Drug Monit 25(6):665–670CrossRefGoogle Scholar
  62. 62.
    Ueno T, Tanaka A, Hamanaka Y et al (1995) Serum drug concentrations after oral administration of paracetamol to patients with surgical resection of the gastrointestinal tract. Br J Clin Pharmacol 39(3):330–332CrossRefGoogle Scholar
  63. 63.
    Goday Arno A, Farré M, Rodríguez-Morató J, Ramon JM, Pérez-Mañá C, Papaseit E, Civit E, Langohr K, Lí Carbó M, Boix DB, Nino OC, Le Roux JAF, Pera M, Grande L, de la Torre R (2017 Dec) Pharmacokinetics in morbid obesity: influence of two bariatric surgery techniques on paracetamol and caffeine metabolism. Obes Surg 27(12):3194–3201.  https://doi.org/10.1007/s11695-017-2745-z CrossRefPubMedGoogle Scholar
  64. 64.
    Terry SI, Gould JC, McManus JP, Prescott LF (1982) Absorption of penicillin and paracetamol after small intestinal bypass surgery. Eur J Clin Pharmacol 23(3):245–248CrossRefGoogle Scholar
  65. 65.
    Szałek E, Karbownik A, Murawa D et al (2014 Feb) The pharmacokinetics of the effervescent vs. conventional tramadol/paracetamol fixed-dose combination tablet in patients after total gastric resection. Pharmacol Rep 66(1):159–164.  https://doi.org/10.1016/j.pharep.2013.06.010 CrossRefPubMedGoogle Scholar
  66. 66.
    Szałek E, Karbownik A, Murawa D, Połom K, Tezyk A, Gracz J, Grabowski T, Grześkowiak E, Biczysko-Murawa A, Murawa P (2014) The pharmacokinetics of oral oxycodone in patients after total gastric resection. Eur Rev Med Pharmacol Sci 18(20):3126–3133PubMedGoogle Scholar
  67. 67.
    Lloret-Linares C, Hirt D, Bardin C, Bouillot JL, Oppert JM, Poitou C, Chast F, Mouly S, Scherrmann JM, Bergmann JF, Declèves X (2014) Effect of a Roux-en-Y gastric bypass on the pharmacokinetics of oral morphine using a population approach. Clin Pharmacokinet 53(10):919–930.  https://doi.org/10.1007/s40262-014-0163-0 CrossRefPubMedGoogle Scholar
  68. 68.
    Porażka J, Karbownik A, Murawa D, Spychała A, Firlej M, Grabowski T, Murawa P, Grześkowiak E, Szałek E (2017) The pharmacokinetics of oral ketoprofen in patients after gastric resection. Pharmacol Rep 69(2):296–299.  https://doi.org/10.1016/j.pharep.2016.11.010 CrossRefPubMedGoogle Scholar
  69. 69.
    Pournaras DJ, Footitt D, Mahon D, Welbourn R (2011) Reduced phenytoin levels in an epileptic patient following roux-En-Y gastric bypass for obesity. Obes Surg 21(5):684–685.  https://doi.org/10.1007/s11695-010-0107-1 CrossRefPubMedGoogle Scholar
  70. 70.
    Kennedy MC, Wade DN (1979) Phenytoin absorption in patients with ileojejunal bypass. Br J Clin Pharmacol 7(5):515–518CrossRefGoogle Scholar
  71. 71.
    Musfeldt D, Levinson A, Nykiel J, Carino G (2016) Lithium toxicity after roux-en-Y bariatric surgery. BMJ Case Rep.  https://doi.org/10.1136/bcr-2015-214056
  72. 72.
    Robbins B, Reiss RA (1999) Amitriptyline absorption in a patient with short bowel syndrome. Am J Gastroenterol 94(8):2302–2304CrossRefGoogle Scholar
  73. 73.
    Broyles JE, Brown RO, Self TH, Frederick RC, Luther RW (1990) Nortriptyline absorption in short bowel syndrome. JPEN J Parenter Enteral Nutr 14(3):326–327CrossRefGoogle Scholar
  74. 74.
    Roerig JL, Steffen K, Zimmerman C, Mitchell JE, Crosby RD, Cao L (2012) Preliminary comparison of sertraline levels in postbariatric surgery patients versus matched nonsurgical cohort. Surg Obes Relat Dis 8(1):62–66.  https://doi.org/10.1016/j.soard.2010.12.003 CrossRefPubMedGoogle Scholar
  75. 75.
    Edwards A, Ensom MH (2012) Pharmacokinetic effects of bariatric surgery. Ann Pharmacother 46(1):130–136CrossRefGoogle Scholar
  76. 76.
    Krieger CA, Cunningham JL, Reid JM, Langman LJ, Grothe KB, Clark MM, Dierkhising RA (2017) Comparison of bioavailability of single-dose extended-release venlafaxine capsules in obese patients before and after gastric bypass surgery. Pharmacotherapy 37(11):1374–1382.  https://doi.org/10.1002/phar.2022 CrossRefPubMedGoogle Scholar
  77. 77.
    Faye E, Corcos O, Lancelin F, Declèves X, Bergmann JF, Joly F, Lloret-Linares C (2014) Antidepressant agents in short bowel syndrome. Clin Ther 36(12):2029–2033.e3.  https://doi.org/10.1016/j.clinthera.2014.09.018 CrossRefPubMedGoogle Scholar
  78. 78.
    Azran C, Langguth P, Dahan A (2017) Impaired oral absorption of methylphenidate after roux-en-Y gastric bypass. Surg Obes Relat Dis 13(7):1245–1247.  https://doi.org/10.1016/j.soard.2017.03.003 ReviewCrossRefPubMedGoogle Scholar
  79. 79.
    Strømmen M, Helland A, Kulseng B, Spigset O (2016 Jun) Bioavailability of methadone after sleeve gastrectomy: a planned case observation. Clin Ther 38(6):1532–1536.  https://doi.org/10.1016/j.clinthera.2016.04.033 CrossRefPubMedGoogle Scholar
  80. 80.
    Bauer L (2001) Applied clinical pharmacokinetics, 1st edn. McGraw-Hill, Nueva YorkGoogle Scholar
  81. 81.
    Severijnen R, Bayat N, Bakker H, Tolboom J, Bongaerts G (2004) Enteral drug absorption in patients with short small bowel: a review. Clin Pharmacokinet 43(14):951–962CrossRefGoogle Scholar
  82. 82.
    Miller AD, Smith KM (2006) Medication and nutrient administration considerations after bariatric surgery. Am J Health Syst Pharm 63(19):1852–1857CrossRefGoogle Scholar
  83. 83.
    Darwich AS, Henderson K, Burgin A, Ward N, Whittam J, Ammori BJ, Ashcroft DM, Rostami-Hodjegan A (2012) Trends in oral drug bioavailability following bariatric surgery: examining the variable extent of impact on exposure of different drug classes. Br J Clin Pharmacol 74(5):774–787CrossRefGoogle Scholar
  84. 84.
    Stein J, Stier C, Raab H, Weiner R (2014) Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther 40:582–609CrossRefGoogle Scholar
  85. 85.
    Ward N (2010) The impact of intestinal failure on oral drug absorption: a review. J Gastrointest Surg 14(6):1045–1051CrossRefGoogle Scholar
  86. 86.
    Roering JL, Steffen KJ, Zimmerman C, Mitchell JE, Crosby RD, Cao L (2013) A comparison of duloxetine plasma levels in postbariatric surgery patients versus matched nonsurgical control subjects. J Clin Psychopharmacol 33:479–484CrossRefGoogle Scholar
  87. 87.
    Yska JP, van der Linde S, Tapper VV, Apers JA, Emous M, Totté ER, Wilffert B, van Roon EN. Influence of bariatric surgery on the use and pharmacokinetics of some major drug classesGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Manuela Moreno Santamaría
    • 1
  • José Javier Arenas Villafranca
    • 1
  • Jimena Abilés
    • 1
  • Alberto Fernández López
    • 2
  • Lucia Visiedo Rodas
    • 1
  • Begoña Tortajada Goitia
    • 1
  • Pilar Utrilla Navarro
    • 3
  1. 1.Pharmacy and Nutrition DepartmentCosta del Sol HospitalMarbellaSpain
  2. 2.Surgery DepartmentQuirónsalud HospitalPalmonesSpain
  3. 3.Pharmacology DepartmentUniversity of GranadaGranadaSpain

Personalised recommendations