European Journal of Clinical Pharmacology

, Volume 74, Issue 8, pp 1011–1020 | Cite as

Association of DNA methylation in BDNF with escitalopram treatment response in depressed Chinese Han patients

  • Peipei Wang
  • Cuizhen Zhang
  • Qinyu Lv
  • Chenxi Bao
  • Hong Sun
  • Guo Ma
  • Yiru Fang
  • Zhenghui YiEmail author
  • Weimin CaiEmail author



The neurotrophin brain-derived neurotrophic factor (BDNF) has been found to be associated with both the pathophysiology of depression and antidepressants response. Gene expression differences were partly mediated by SNP, which might be identified as a predictor of antidepressant response. In the present study, we attempt to identify whether DNA methylation, another factor known to affect gene transcription, might also predict antidepressant response.


A total of 85 depressed Chinese Han patients were followed-up 8 weeks after initiating escitalopram treatment. Treatment response was assessed by changes in the Hamilton Depression Rating Scale-17 (HAMD-17) score. The Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) were utilized as the assessment of previous life stress. The bisulfate sequencing was used to assess DNA methylation. Four single nucleotide polymorphisms (SNPs) in the BDNF gene were genotyped using PCR-RFLP or PCR sequencing.


We identified a DNA methylation predictor (P = 0.006–0.036) and a DNA methylation by LES interaction predictor (OR = 1.442 [1.057–1.968], P = 0.021) of general antidepressant treatment response. Lower mean BDNF DNA methylation was associated with impaired antidepressant response. Furthermore, the present data indicated that age, life stress, and SNPs genotype might be likely related to DNA methylation status. Average DNA methylation of BDNF at baseline was significantly lower than that at endpoint after 8 weeks of escitalopram treatment, which was based only on a subset of cases (n = 44).


Our results suggest that BDNF DNA hypomethylation and its interaction with lower LES score might result in impaired antidepressant treatment response. The pharmacoepigenetic study could eventually help in finding epigenetic biomarkers of antidepressant response.


Major depressive disorder Escitalopram Brain-derived neurotrophic factor Polymorphism DNA methylation 



We gratefully acknowledge the data analysis support of Dr. Caifu Xue.

Author contributions

Weimin Cai, Zhenghui Yi, and Peipei Wang conceived and designed the study. Peipei Wang and Weimin Cai wrote the manuscript. Peipei Wang contributed to the data analysis. Peipei Wang, Cuizhen Zhang, Qinyu Lv, Yiru Fang, and Zhenghui Yi collected the samples. Peipei Wang, Hong Sun, Cuizhen Zhang, and Guo Ma contributed to the reagents, materials, and analysis tools. All the authors read and approved the final manuscript.


This work was supported by the National Key R&D Program of China (2016YFC1307100, 2016YFC1305904), the National Basic Research Program of China (Precision Psychiatry Program 2016YFC0906402), the National Natural Science Foundation of China (81671326), the CAS Key Laboratory of Mental Health (KLMH2018K02), the combination of traditional Chinese and Western medicine in Shanghai general hospital in 2017 (ZHYY-ZXYJHZX-2-201708), and the Shanghai Science and Technology Commission Foundation (17411970000).

Compliance with ethical standards

The study was approved by the ethics committees of Shanghai Mental Health Center (2012-26R) and performed according to the Declaration of Helsinki and the International Conference on Harmonization-Good Clinical Practice standards. All participating subjects received a description of the study and gave informed written consent.

Competing interests

The authors declare that they have no conflict of interest.

Supplementary material

228_2018_2463_MOESM1_ESM.docx (61 kb)
Table S1 (DOCX 60 kb)
228_2018_2463_Fig5_ESM.gif (223 kb)
Figure S1

(GIF 222 kb)

228_2018_2463_MOESM2_ESM.tif (103 kb)
High Resolution Image (TIF 103 kb)
228_2018_2463_Fig6_ESM.gif (136 kb)
Figure S2

(GIF 135 kb)

228_2018_2463_MOESM3_ESM.tiff (1 mb)
High Resolution Image (TIFF 1027 kb)
228_2018_2463_Fig7_ESM.gif (172 kb)
Figure S3

(GIF 172 kb)

228_2018_2463_MOESM4_ESM.tiff (314 kb)
High Resolution Image (TIFF 314 kb)
228_2018_2463_Fig8_ESM.gif (19 kb)
Figure S4

(GIF 18 kb)

228_2018_2463_MOESM5_ESM.tif (687 kb)
High Resolution Image (TIF 686 kb)


  1. 1.
    Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJL, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet 382(9904):1575–1586. CrossRefPubMedGoogle Scholar
  2. 2.
    Kenneth SK, Margaret G, Charles OG, Nancy LP (2006) A Swedish national twin study of lifetime major depression. Am J Psychiatry 163:109–114CrossRefGoogle Scholar
  3. 3.
    Ozomaro U, Wahlestedt C, Nemeroff CB (2013) Personalized medicine in psychiatry: problems and promises. BMC Med 11:132. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gibson T, Jing Y, Smith CG, Kim E, Bagalman J, Burton W, Tran Q, Pikalov A, Goetzel R (2010) Cost burden of treatment resistance in patients with depression. Am J Manag Care 16(5):370–377PubMedGoogle Scholar
  5. 5.
    Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiat 53(8):649–659. CrossRefPubMedGoogle Scholar
  6. 6.
    Keers R, Aitchison KJ (2011) Pharmacogenetics of antidepressant response. Expert Rev Neurother 11(1):101–125. CrossRefPubMedGoogle Scholar
  7. 7.
    Horstmann S, Binder EB (2009) Pharmacogenomics of antidepressant drugs. Pharmacol Therapeut 124(1):57–73. CrossRefGoogle Scholar
  8. 8.
    Murphy GJ, Kremer C, Rodrigues HE, Schatzberg AF (2003) Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 160(10):1830–1835. CrossRefPubMedGoogle Scholar
  9. 9.
    Reynolds GP, McGowan OO, Dalton CF (2014) Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 77(4):654–672. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chiara F, Stefano P, Alessandro S (2014) From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. Can J PsychiatrGoogle Scholar
  11. 11.
    Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dwivedi Y (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 5:433–449CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiat 64(6):527–532. CrossRefPubMedGoogle Scholar
  15. 15.
    Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J, Voshaar RC, Elzinga BM (2011) Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry 16(11):1088–1095. CrossRefPubMedGoogle Scholar
  16. 16.
    Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K (2011) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32(2):159–224. CrossRefPubMedGoogle Scholar
  17. 17.
    Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, Iwamoto K, Tochigi M, Kasai K, Kaiya H, Tanii H, Okazaki Y, Tokunaga K, Sasaki T (2017) Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics 9(1).
  18. 18.
    Kember RL, Dempster EL, Lee THA, Schalkwyk LC, Mill J, Fernandes C (2012) Maternal separation is associated with strain-specific responses to stress and epigenetic alterations to Nr3c1, Avp, and Nr4a1 in mouse. Brain Behav 2(4):455. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tadić A, Müller-Engling L, Schlicht KF, Kotsiari A, Dreimüller N, Kleimann A, Bleich S, Lieb K, Frieling H (2013) Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. MOL PSYCHIATR 19(3):281–283. CrossRefGoogle Scholar
  20. 20.
    Okada S, Morinobu S, Fuchikami M, Segawa M, Yokomaku K, Kataoka T, Okamoto Y, Yamawaki S, Inoue T, Kusumi I, Koyama T, Tsuchiyama K, Terao T, Kokubo Y, Mimura M (2014) The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J Psychiatr Res 53:47–53. CrossRefPubMedGoogle Scholar
  21. 21.
    Domschke K, Tidow N, Schwarte K, Deckert J, Lesch K, Arolt V, Zwanzger P, Baune BT (2014) Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol 17(08):1167–1176. CrossRefPubMedGoogle Scholar
  22. 22.
    Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, Mill J, Tansey KE (2013) DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiat 3(9):e300. CrossRefGoogle Scholar
  23. 23.
    Gass P, Rodr Guez N, Bl Zquez A, Monteagudo A, Boloc D, Plana MT, Lafuente A, Zaro L, Arnaiz JA, Mas S (2017) Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Prog Neuro-Psychopharmacol Biol Psychiatry 75:28–34. CrossRefGoogle Scholar
  24. 24.
    Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367. CrossRefPubMedGoogle Scholar
  25. 25.
    McDade TW, Ryan C, Jones MJ, MacIsaac JL, Morin AM, Meyer JM, Borja JB, Miller GE, Kobor MS, Kuzawa CW (2017) Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proc Natl Acad Sci 114(29):7611–7616. CrossRefPubMedGoogle Scholar
  26. 26.
    Gao X, Thomsen H, Zhang Y, Breitling LP, Brenner H (2017) The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes. Clin Epigenetics 9(1).
  27. 27.
    Walker RM, Christoforou AN, McCartney DL, Morris SW, Kennedy NA, Morten P, Anderson SM, Torrance HS, Macdonald A, Sussmann JE, Whalley HC, Blackwood DHR, McIntosh AM, Porteous DJ, Evans KL (2016) DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder. Clin Epigenetics 8(1).
  28. 28.
    Binder EB, Nemeroff CB (2009) The CRF system, stress, depression and anxiety—insights from human genetic studies. Mol Psychiatr 15(6):574–588. CrossRefGoogle Scholar
  29. 29.
    Avshalom C, Karen S, Terrie EM, Alan Taylor IWCH (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389CrossRefGoogle Scholar
  30. 30.
    Heaton P, Davis RE, Happ FGE (2008) Research note: exceptional absolute pitch perception for spoken words in an able adult with autism. Neuropsychologia 46(7):2095–2098. CrossRefPubMedGoogle Scholar
  31. 31.
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bauer M, Whybrow P, Angst J, Versiani M, Moller H (2002) World Federation of Societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders, part 1: acute and continuation treatment of major depressive disorder. World J Biol Psychiatry 3(1):5–43CrossRefPubMedGoogle Scholar
  33. 33.
    Sun N, Xu Y, Wang Y, Duan H, Wang S, Ren Y, Peng J, Du Q, Shen Y, Xu Q, Zhang K (2008) The combined effect of norepinephrine transporter gene and negative life events in major depression of Chinese Han population. J Neural Transm 115(12):1681–1686CrossRefPubMedGoogle Scholar
  34. 34.
    Häuser W, Hoffmann E, Wolfe F, Worthing A, Stahl N, Rothenberg R, Walitt B (2015) Self-reported childhood maltreatment, lifelong traumatic events and mental disorders in fibromyalgia syndrome: a comparison of US and German outpatients. Clin Exp Rheumatol 33(1 Suppl 88):S86–S92PubMedPubMedCentralGoogle Scholar
  35. 35.
    Thombs BD, Bernstein DP, Lobbestael J, Arntz A (2009) A validation study of the Dutch childhood trauma questionnaire-short form: factor structure, reliability, and known-groups validity. Child Abuse Negl 33(8):518–523. CrossRefPubMedGoogle Scholar
  36. 36.
    Grimberg J, Nawoschik S, Belluscio L, McKee R, Turck A, Eisenberg A (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17(20):8390CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kurita M, Nishino S, Kato M, Numata Y, Sato T (2012) Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study: e39212. PLoS One 7(6).
  38. 38.
    Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15(5):473–500. CrossRefPubMedGoogle Scholar
  39. 39.
    Frieling H, Tadic A (2013) Value of genetic and epigenetic testing as biomarkers of response to antidepressant treatment. Int Rev Psychiatry 25(5):572–578. CrossRefPubMedGoogle Scholar
  40. 40.
    Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 104(4):1319–1324. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Domschke K, Tidow N, Schwarte K, Ziegler C, Lesch K, Deckert JR, Arolt V, Zwanzger P, Baune BT (2015) Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response. J Neural Transm 122(1):99–108. CrossRefPubMedGoogle Scholar
  42. 42.
    Kim J, Stewart R, Kang H, Bae K, Kim S, Shin I, Hong YJ, Ahn Y, Jeong MH, Yoon J (2015) BDNF methylation and depressive disorder in acute coronary syndrome: the K-DEPACS and EsDEPACS studies. Psychoneuroendocrino 62:159–165. CrossRefGoogle Scholar
  43. 43.
    Domschke K, Tidow N, Kuithan H, Schwarte K, Klauke B, Ambree O, Reif A, Schmidt H, Arolt V, Kersting A, Zwanzger P, Deckert J (2012) Monoamine oxidase a gene DNA hypomethylation—a risk factor for panic disorder? Int J Neuropsychopharmacol 15(9):1217–1228CrossRefPubMedGoogle Scholar
  44. 44.
    Domschke K, Tidow N, Schrempf M, Schwarte K, Klauke B, Reif A, Kersting A, Arolt V, Zwanzger P, Deckert JR (2013) Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? Prog Neuro-Psychopharmacol Biol Psychiatry 46:189–196. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peipei Wang
    • 1
  • Cuizhen Zhang
    • 1
  • Qinyu Lv
    • 2
  • Chenxi Bao
    • 2
  • Hong Sun
    • 1
  • Guo Ma
    • 1
  • Yiru Fang
    • 2
  • Zhenghui Yi
    • 2
    Email author
  • Weimin Cai
    • 1
    Email author
  1. 1.Department of Clinical Pharmacy, School of PharmacyFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations