European Journal of Clinical Pharmacology

, Volume 74, Issue 5, pp 549–559 | Cite as

A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs

  • Sophie I. E. Knahl
  • Benjamin Lang
  • Frank Fleischer
  • Meinhard Kieser
Clinical Trial
  • 94 Downloads

Abstract

Purpose

A drug is defined as highly variable if its intra-individual coefficient of variation (CV) is greater than or equal to 30%. In such a case, bioequivalence may be assessed by means of methods that take the (high) variability into account. The Scaled Average Bioequivalence (SABE) approach is such a procedure and represents the recommendations of FDA. The aim of this investigation is to compare the performance characteristics of classical group sequential designs (GSD) and fixed design settings for three-period crossover bioequivalence studies with highly variable drugs, where the SABE procedure is utilized.

Methods

Monte Carlo simulations were performed to assess type I error rate, power, and average sample size for GSDs with Pocock’s and O’Brien-Fleming’s stopping rules and various timings of the interim analysis and for fixed design settings.

Results

Based on our investigated scenarios, the GSDs show comparable properties with regard to power and type I error rate as compared to the corresponding fixed designs. However, due to an advantage in average sample size, the most appealing design is Pocock’s approach with interim analysis after 50% information fraction.

Conclusions

Due to their favorable performance characteristics, two-stage GSDs are an appealing alternative to fixed sample designs when assessing bioequivalence in highly variable drugs.

Keywords

Bioequivalence Highly variable drugs Group sequential designs Two-stage designs 

Notes

Acknowledgements

The authors would like to thank the Editor and two anonymous reviewers for their helpful comments that helped us to improve the manuscript.

Author contribution

S.I.E.K., B.L., F.F., and M.K. wrote the manuscript; S.I.E.K., B.L., F.F., and M.K. designed the research; S.I.E.K. performed the research; S.I.E.K., B.L., F.F., and M.K. analyzed the results.

Supplementary material

228_2018_2415_MOESM1_ESM.docx (121 kb)
ESM 1 (DOCX 120 kb)

References

  1. 1.
    European Medicines Agency (2010) Committee for medicinal products for human use (CHMP). Guideline on the investigation of bioequivalence. Available online at http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf(January 8, 2018)
  2. 2.
    U.S. Food and Drug Administration (2001) Guidance for industry: statistical approaches to establishing bioequivalence. Available online at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070244.pdf (January 8, 2018)
  3. 3.
    Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, Smith RA (2008) Sequential design approaches for bioequivalence studies with crossover designs. Pharm Stat 7(4):245–262.  https://doi.org/10.1002/pst.294 CrossRefPubMedGoogle Scholar
  4. 4.
    Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ (2012) Additional results for ‘sequential design approaches for bioequivalence studies with crossover designs’. Pharm Stat 11(1):8–13.  https://doi.org/10.1002/pst.483 CrossRefPubMedGoogle Scholar
  5. 5.
    Xu J, Audet C, DiLiberti CE, Hauck WW, Montague TH, Parr AF, Potvin D, Schuirmann DJ (2016) Optimal adaptive sequential designs for crossover bioequivalence studies. Pharm Stat 15(1):15–27.  https://doi.org/10.1002/nnnnnnn1721 CrossRefPubMedGoogle Scholar
  6. 6.
    Kieser M, Rauch G (2015) Two-stage designs for cross-over bioequivalence trials. Stat Med 34(16):2403–2416.  https://doi.org/10.1002/sim.6487 CrossRefPubMedGoogle Scholar
  7. 7.
    Jennison C, Turnbull BW (2000) Group sequential methods with applications to clinical trials. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  8. 8.
    Pocock SJ (1977) Group sequential methods in the design and analysis of clinical trials. Biometrika 64(2):191–199.  https://doi.org/10.1093/biomet/64.2.191 CrossRefGoogle Scholar
  9. 9.
    Lehmacher W, Wassmer G (1999) Adaptive sample size calculations in group sequential trials. Biometrics 55(4):1286–1290.  https://doi.org/10.1111/j.0006-341X.1999.01286.x CrossRefPubMedGoogle Scholar
  10. 10.
    Endrenyi L, Tothfalusi L (2009) Regulatory conditions for the determination of bioequivalence of highly variable drugs. J Pharm Pharm Sci 12(1):138–149.  https://doi.org/10.18433/J3ZW2C CrossRefPubMedGoogle Scholar
  11. 11.
    Karalis V, Symillides M, Macheras P (2012) Bioequivalence of highly variable drugs: a comparison of the newly proposed regulatory approaches by FDA and EMA. Pharm Res 29(4):1066–1077.  https://doi.org/10.1007/s11095-011-0651-y CrossRefPubMedGoogle Scholar
  12. 12.
    Tothfalusi L, Endrenyi L (2012) Sample sizes for designing bioequivalence studies for highly variable drugs. J Pharm Pharm Sci 15(1):72–84Google Scholar
  13. 13.
    Tothfalusi L, Endrenyi L, Arieta A (2009) Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence. Clin Pharmacokinet 48(11):725–743.  https://doi.org/10.2165/11318040-000000000-00000 CrossRefPubMedGoogle Scholar
  14. 14.
    U.S. Food and Drug Administration (2010) Draft guidance on progesterone. Available online at http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/%20guidances/ucm209294.pdf (January 8, 2018)
  15. 15.
    Patterson S, Jones B (2006) Bioequivalence and statistics in clinical pharmacology. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  16. 16.
    Karalis V, Macheras P (2013) An insight into the properties of a two-stage design in bioequivalence studies. Pharm Res 30(7):1824–1835.  https://doi.org/10.1007/s11095-013-1026-3 CrossRefPubMedGoogle Scholar
  17. 17.
    Schütz H (2015) Two-stage designs in bioequivalence trials. Eur J Clin Pharmacol 71(3):271–281.  https://doi.org/10.1007/s00228-015-1806-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Wonnemann M, Frömke C, Koch A (2015) Inflation of the type i error: investigations on regulatory recommendations for bioequivalence of highly variable drugs. Pharm Res 32(1):135–143.  https://doi.org/10.1007/s11095-014-1450-z CrossRefPubMedGoogle Scholar
  19. 19.
    National Institute of Public Health of Japan, Division of Drugs (2012) Guideline for bioequivalence studies of generic products. Available online at http://www.nihs.go.jp/drug/be-guide(e)/Generic/ GL-E_120229_BE.pdf (January 8, 2018)
  20. 20.
    Muñoz J, Alcaide D, Ocaa J (2015) Consumer’s risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs. Stat Med 35(12):1933–1943.  https://doi.org/10.1002/sim.6834 CrossRefPubMedGoogle Scholar
  21. 21.
    Labes D, Schütz H (2016) Inflation of type I error in the evaluation of scaled average bioequivalence, and a method for its control. Pharm Res 33(11):2805–2814.  https://doi.org/10.1007/s11095-016-2006-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Haidar SH, Makhlouf F, Schuirmann DJ, Hyslop T, Davit B, Conner D, Yu LX (2008) Evaluation of a scaling approach for the bioequivalence of highly variable drugs. AAPS J 10(3):450–454.  https://doi.org/10.1208/s12248-008-9053-4 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Davit BM, Chen ML, Conner DP, Haidar SH, Kim S, Lee CH, Lionberger RA, Makhlouf FT, Nwakama PE, Patel DT, Schuirmann DJ, Yu LX (2012) Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the us food and drug administration. AAPS J 14(4):915–924.  https://doi.org/10.1208/s12248-012-9406-x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hyslop T, Hsuan F, Holder DJ (2000) A small sample confidence interval approach to assess individual bioequivalence. Stat Med 19(20):2885–2897.  https://doi.org/10.1002/1097-0258(20001030)19:20(2885:AID-SIM553)3.0.CO;2-H CrossRefPubMedGoogle Scholar
  25. 25.
    Mazumdar M, Bang H (2008) Sequential and group sequential designs in clinical trials: guidelines for practitioners. Handb Stat 27:491–512CrossRefGoogle Scholar
  26. 26.
    Wassmer G (2001) Statistische Testverfahren für gruppensequentielle und adaptive Pläne in klinischen Studien. Theoretische Konzepte und deren Umsetzung mit SAS. Köln, Verlag Alexander MönchGoogle Scholar
  27. 27.
    Lan KKG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70(3):659–663.  https://doi.org/10.2307/2336502 CrossRefGoogle Scholar
  28. 28.
    Wang SK, Tsiatis AA (1987) Approximately optimal one-parameter boundaries for group sequential trials. Biometrics 43(1):193–199.  https://doi.org/10.2307/2531959 CrossRefPubMedGoogle Scholar
  29. 29.
    O’Brien PC, Fleming TR (1979) A multiple testing procedure for clinical trials. Biometrics 35(3):549–556.  https://doi.org/10.2307/2530245 CrossRefPubMedGoogle Scholar
  30. 30.
    Labes D, Schuetz H, Lang B (2015) PowerTOST: Power and sample size based on Two One-Sided t-Tests (TOST) for (Bio)equivalence studies. R package version 1.2–06Google Scholar
  31. 31.
    Addplan (2014) Adaptive Designs - Plans and Analyses. Version 6.1.1. ADDPLAN, Inc. An Aptiv Solutions CompanyGoogle Scholar
  32. 32.
    SAS® Version 9.2 or higher of the SAS System (2002) Copyright© 2002–2003. SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, North Carolina, USAGoogle Scholar
  33. 33.
    BEBAC Schütz H (2015) Bioequivalence and bioavailability forum. Available online at http://forum.bebac.at/mix_entry.php?id=10202 (January 8, 2018)
  34. 34.
    Hettema W, Wynne C, Lang B, Altendorfer M, Czeloth N, Lohmann R, Schliephake D (2017) A randomized, single-blind, phase I trial (INVICTAN-1) assessing the bioequivalence and safety of BI 695502, a bevacizumab biosimilar candidate, in healthy subjects. Expert Opin Investig Drugs 26(8):889–896.  https://doi.org/10.1080/13543784.2017.1347635 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
  2. 2.Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations