Advertisement

European Journal of Clinical Pharmacology

, Volume 72, Issue 7, pp 839–848 | Cite as

Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients

  • Francesca MattioliEmail author
  • Carmen Fucile
  • Valerio Del Bono
  • Valeria Marini
  • Andrea Parisini
  • Alexandre Molin
  • Maria Laura Zuccoli
  • Giulia Milano
  • Romano Danesi
  • Anna Marchese
  • Marialuisa Polillo
  • Claudio Viscoli
  • Paolo Pelosi
  • Antonietta Martelli
  • Antonello Di Paolo
Pharmacokinetics and Disposition

Abstract

Purpose

Patients admitted to intensive care unit (ICU) with Klebsiella pneumoniae infections are characterized by high mortality. The aims of the present study were to investigate the population pharmacokinetics parameters and to assess the probability of target attainment of meropenem in critically ill patients to provide information for more effective regimens.

Methods

Twenty-seven consecutive patients were included in the study. Meropenem was administered as 3-h intravenous (i.v.) infusions at doses of 1–2 g every 8 or 12 h. Meropenem plasma concentrations were measured by a high-performance liquid chromatography (HPLC) method, and a population pharmacokinetics analysis was performed using NONMEM software. Meropenem plasma disposition was simulated for extended (3 h; 5 h) or continuous i.v. infusions, and the following parameters were calculated: time during which free drug concentrations were above minimum inhibitory concentration (MIC) (fT > MIC), free minimum plasma concentrations above 4× MIC (fCmin > 4× MIC), probability of target attainment (PTA), and cumulative fraction of response (CFR).

Results

Gender and severity of sepsis affected meropenem clearance, whose typical population values ranged from 6.22 up to 12.04 L/h (mean ± standard deviation (SD) value, 9.38 ± 4.47 L/h). Mean C min value was 7.90 ± 7.91 mg/L, suggesting a high interindividual variability. The simulation confirmed that 88 and 97.5 % of patients achieved effective C min > 4× MIC values after 3- and 5-h i.v. infusions of meropenem 2 g × 3/day, respectively. On the contrary, the same total daily doses reached the target C min > 4× MIC values in 100 % of patients when administered as continuous i.v. infusions.

Conclusions

Several factors may influence meropenem pharmacokinetics in ICU patients. Continuous i.v. infusions of meropenem seem to be more effective than standard regimens to achieve optimal therapeutic targets.

Keywords

Meropenem Population pharmacokinetic Critically ill patients Therapeutic drug monitoring 

Notes

Acknowledgments

The authors should thank the patients, their relatives, and nurse staff for their invaluable support in this study.

Author’s contribution

Authors

Conception and design of study

Acquisition of data: laboratory or clinical

Analysis of data

Drafting of article and/or critical revision

Final approval of manuscript

Francesca Mattioli

X

 

X

X

X

Carmen Fucile

X

 

X

X

X

Valerio Del Bono

X

  

X

X

Valeria Marini

 

X

  

X

Andrea Parisini

X

X

  

X

Alexandre Molin

X

X

  

X

Maria Laura Zuccoli

 

X

  

X

Giulia Milano

 

X

  

X

Romano Danesi

   

X

X

Anna Marchese

 

X

  

X

Marialuisa Polillo

  

X

 

X

Claudio Viscoli

   

X

X

Paolo Pelosi

   

X

X

Antonietta Martelli

   

X

X

Antonello Di Paolo

X

 

X

X

X

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Disclosure

The study did not provide any source of funding by sponsor.

Conflict of interest

Antonello Di Paolo is a board member for Novartis Pharma Spa. The other authors have none to declare.

Headings

- Meropenem pharmacokinetics is highly variable in ICU patients with severe infections, and some patients do not achieve effective meropenem plasma concentrations.

- The severity of infection does influence the pharmacokinetics of meropenem.

- Meropenem efficacy could be increased by the adoption of continuous infusions.

Supplementary material

228_2016_2053_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Binder L, Schwörer H, Hoppe S, Streit F, Neumann S, Beckmann A, et al. (2013) Pharmacokinetics of meropenem in critically ill patients with severe infections. Ther Drug Monit 35:63–70CrossRefPubMedGoogle Scholar
  2. 2.
    Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082CrossRefPubMedGoogle Scholar
  3. 3.
    Drusano GL, Hutchison M (1995) The pharmacokinetics of meropenem. Scand J Infect Dis Suppl 96:11–16PubMedGoogle Scholar
  4. 4.
    European Medicines Agency (2009) Meropenem summary of product characteristics http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Meronem_30/WC500018555.pdf. Accessed 2 April 2015
  5. 5.
    Jaruratanasirikul S, Limapichat T, Jullangkoon M, Aeinlang N, Ingviya N, Wongpoowarak W (2011) Pharmacodynamics of meropenem in critically ill patients with febrile neutropenia and bacteraemia. Int J Antimicrob Agents 38:231–236CrossRefPubMedGoogle Scholar
  6. 6.
    Lomaestro BM, Drusano GL (2005) Pharmacodynamic evaluation of extending the administration time of meropenem using a Monte Carlo simulation. Antimicrob Agents Chemother 49:461–463CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    MacGowan A (2011) Revisiting beta-lactams—PK/PD improves dosing of old antibiotics. Curr Opin Pharmacol 11:470–476CrossRefPubMedGoogle Scholar
  8. 8.
    Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55:601–607CrossRefPubMedGoogle Scholar
  9. 9.
    Drusano GL (2003) Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis 36(Suppl. 1):S42–S50CrossRefPubMedGoogle Scholar
  10. 10.
    Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10CrossRefPubMedGoogle Scholar
  11. 11.
    Blot SI, Pea F, Lipman J (2014) The effect of pathophysiology on pharmacokinetics in the critically ill patient–concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev 77:3–11CrossRefPubMedGoogle Scholar
  12. 12.
    Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, et al. (2010) Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents 36:332–339CrossRefPubMedGoogle Scholar
  13. 13.
    De Waele JJ, Carrette S, Carlier M, Stove V, Boelens J, Claeys G, et al. (2014) Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: a randomized controlled trial. Intensive Care Med 40:380–387CrossRefPubMedGoogle Scholar
  14. 14.
    Crandon JL, Ariano RE, Zelenitsky SA, Nicasio AM, Kuti JL, Nicolau DP (2011) Optimization of meropenem dosage in the critically ill population based on renal function. Intensive Care Med 37:632–638CrossRefPubMedGoogle Scholar
  15. 15.
    Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 64:142–150CrossRefPubMedGoogle Scholar
  16. 16.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions Conference. Intensive Care Med 31(4):1250–1256Google Scholar
  17. 17.
    CLSI (2012) Performance standards for antimicrobial susceptibility testing: twenty-second Informational Supplement. CLSI document M100–22. Wayne, PA, Clinical and Laboratory Standards InstituteGoogle Scholar
  18. 18.
    Legrand T, Chhun S, Rey E, Blanchet B, Zahar JR, Lanternier F, et al. (2008) Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 875:551–556CrossRefPubMedGoogle Scholar
  19. 19.
    International Conference on Harmonization (ICH). Harmonised tripartite guideline: validation of analytical procedures: text and methodology Q2(R1) 6 1996. ICH Official web site Available: http://www.ich.org. Accessed 8 May 2015
  20. 20.
    Shah VP, Midha KK, Dighe S (1992) Conference report: analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. J Pharm Sci-US 81:309–312CrossRefGoogle Scholar
  21. 21.
    Beal SL, Sheiner LB, Boeckmann AJ (2009) NONMEM users guides. Ellicott City, MD:ICON Development Solutions 1989Google Scholar
  22. 22.
    Jonsson EN, Karlsson MO (1999) Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Prog Biomed 58:51–64CrossRefGoogle Scholar
  23. 23.
    Lindbom L, Ribbing J, Jonsson EN (2004) Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Prog Biomed 75:85–94CrossRefGoogle Scholar
  24. 24.
    Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13:143–151CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mouton JW, Punt N (2001) Use of the t > MIC to choose between different dosing regimens of beta-lactam antibiotics. J Antimicrob Chemother 47:500–501CrossRefPubMedGoogle Scholar
  26. 26.
    European Committee on Antimicrobial Susceptibility Testing (2016) Data from the EUCAST MIC distribution website, http://www.eucast.org. Accessed February 25, 2015
  27. 27.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829CrossRefPubMedGoogle Scholar
  28. 28.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMedGoogle Scholar
  29. 29.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou QT, He B, Zhang C, Zhai SD, Liu ZY, Zhang J (2011) Pharmacokinetics and pharmacodynamics of meropenem in elderly Chinese with lower respiratory tract infections: population pharmacokinetics analysis using nonlinear mixed-effects modelling and clinical pharmacodynamics study. Drugs Aging 28:903–912CrossRefPubMedGoogle Scholar
  31. 31.
    Novelli A, Adembri C, Livi P, Fallani S, Mazzei T, De Gaudio AR (2005) Pharmacokinetic evaluation of meropenem and imipenem in critically ill patients with sepsis. Clin Pharmacokinet 44:539–549CrossRefPubMedGoogle Scholar
  32. 32.
    Pea F, Viale P (2009) Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock-dose the dose matter? Crit Care 32:214CrossRefGoogle Scholar
  33. 33.
    Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA (2012) β-lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol 39:489–496CrossRefPubMedGoogle Scholar
  34. 34.
    Goncalves-Pereira J, Silva NE, Mateus A, Pinho C, Povoa P (2014) Assessment of pharmacokinetic changes of meropenem during therapy in septic critically ill patients. BMC Pharmacol Toxicol 15:21CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jaruratanasirikul S, Thengyai S, Wongpoowarak W, Wattanavijitkul T, Tangkitwanitjaroen K, Sukarnjanaset W, et al. (2015) Population pharmacokinetics and Monte Carlo dosing simulations of meropenem during the early phase of severe sepsis and septic shock in critically ill patients in intensive care units. Antimicrob Agents Chemother 59:2995–3001CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Thalhammer F, Traunmüller F, EI Menyawi I, Frass M, Hollenstein UM, Locker GJ, et al. (1999) Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother 43:523–527CrossRefPubMedGoogle Scholar
  37. 37.
    Chytra I, Stepan M, Benes J, Pelnar P, Zidkova A, Bergerova T, et al. (2012) Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care 16:R113CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kuti JL, Nightingale CH, Knauft RF, Nicolau DP (2004) Pharmacokinetic properties and stability of continuous-infusion meropenem in adults with cystic fibrosis. Clin Ther 26:493–501CrossRefPubMedGoogle Scholar
  39. 39.
    Taccone FS (2012) Continuous infusion of meropenem in critically ill patients: practical considerations. Crit Care 16:444CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. (2012) Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 55:943–950CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Francesca Mattioli
    • 1
    Email author
  • Carmen Fucile
    • 1
  • Valerio Del Bono
    • 2
  • Valeria Marini
    • 1
  • Andrea Parisini
    • 2
  • Alexandre Molin
    • 3
  • Maria Laura Zuccoli
    • 1
  • Giulia Milano
    • 1
  • Romano Danesi
    • 4
  • Anna Marchese
    • 5
  • Marialuisa Polillo
    • 4
  • Claudio Viscoli
    • 2
  • Paolo Pelosi
    • 3
  • Antonietta Martelli
    • 1
  • Antonello Di Paolo
    • 4
  1. 1.Department of Internal Medicine, Clinical Pharmacology and Toxicology UnitUniversity of GenoaGenoaItaly
  2. 2.Infectious Diseases ClinicsIRCCS A.O.U San Martino-IST, University of GenoaGenoaItaly
  3. 3.Anesthesia and Intensive Care, Department Surgical Sciences and Integrated DiagnosticsIRCCS A.O.U San Martino-IST, University of GenoaGenoaItaly
  4. 4.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  5. 5.Section of Microbiology-DISCUniversity of GenoaGenoaItaly

Personalised recommendations