European Journal of Clinical Pharmacology

, Volume 71, Issue 4, pp 441–447 | Cite as

Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing

  • Samuel Fanta
  • Mari Kinnunen
  • Janne T. Backman
  • Eija Kalso
Pharmacokinetics and Disposition



Low-dose ketamine is a lucrative therapeutic approach in cancer pain, perioperative treatment of pain, and management of treatment-resistant depression. The analgesic potency of its main metabolite norketamine is thought to be one third that of ketamine. However, few studies exist on the pharmacokinetics of orally administered S-ketamine.


In our study, 11 healthy volunteers received S-ketamine 0.25 mg/kg orally and 0.125 mg/kg intravenously. S-ketamine and norketamine concentrations were measured up to 23.5 h post-dose. A population pharmacokinetic model was built to describe S-ketamine and norketamine pharmacokinetics.


A three-compartment model for both S-ketamine and norketamine best described the data. To accommodate for the extensive formation of norketamine after oral S-ketamine, a separate presystemic absorption-phase component was included in addition to its systemic formation. The oral bioavailability of S-ketamine was low, 8 % (11 % interindividual variability), and its clearance was high, 95 L/h/70 kg (13 % interindividual variability). Simulations suggested that after oral dosing, norketamine AUC at steady state is 16.5 times higher than that of S-ketamine.


Given that the analgesic effect of S-ketamine is due to both S-ketamine and norketamine, relatively small oral doses of S-ketamine can be assumed to be a feasible alternative to repeated intravenous dosing, for example in the setting of chronic pain.


Ketamine S-ketamine Norketamine Population pharmacokinetics CYP2B6 CYP3A4 First-pass effect Well-stirred model 



We would like to thank Jouko Laitila and Mikko Neuvonen for conducting the S-ketamine and norketamine concentration measurements. Mrs Eija Mäkinen-Pulli and Mrs Lisbet Partanen are thanked for skillful technical assistance. This study was supported by grants from the Helsinki University Central Hospital Research Fund and the Sigrid Jusélius Foundation, Finland. None of the authors have any financial or personal relationships that could be perceived as influencing the research described. The experiments comply with the current laws of Finland, and the study protocol was approved by the Coordinating Ethics Committee of the Helsinki and Uusimaa Hospital District and by the Finnish Medicines Agency.

Supplementary material

228_2015_1826_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)


  1. 1.
    Domino EF, Chodoff P, Corssen G (1965) Pharmacologic effects of ci-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 6:279–291PubMedGoogle Scholar
  2. 2.
    Geisslinger G, Hering W, Thomann P, Knoll R, Kamp HD, Brune K (1993) Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth 70:666–671CrossRefPubMedGoogle Scholar
  3. 3.
    Arendt-Nielsen L, Nielsen J, Petersen-Felix S, Schnider TW, Zbinden AM (1996) Effect of racemic mixture and the (S+)-isomer of ketamine on temporal and spatial summation of pain. Br J Anaesth 77:625–631CrossRefPubMedGoogle Scholar
  4. 4.
    Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213PubMedGoogle Scholar
  5. 5.
    Bell RF, Dahl JB, Moore RA, Kalso E (2005) Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (cochrane review). Acta Anaesthesiol Scand 49:1405–1428. doi: 10.1111/j.1399-6576.2005.00814.x CrossRefPubMedGoogle Scholar
  6. 6.
    Bell RF, Dahl JB, Moore RA, Kalso E (2006) Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 1, CD004603. doi: 10.1002/14651858.CD004603.pub2 PubMedGoogle Scholar
  7. 7.
    Bell RF, Eccleston C, Kalso EA (2012) Ketamine as an adjuvant to opioids for cancer pain. Cochrane Database Syst Rev 11, CD003351. doi: 10.1002/14651858.CD003351.pub2 PubMedGoogle Scholar
  8. 8.
    Dahan A, Olofsen E, Sigtermans M et al (2011) Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain. Eur J Pain 15:258–267. doi: 10.1016/j.ejpain.2010.06.016 CrossRefPubMedGoogle Scholar
  9. 9.
    Mathew SJ, Shah A, Lapidus K et al (2012) Ketamine for treatment-resistant unipolar depression: current evidence. CNS Drugs 26:189–204. doi: 10.2165/11599770-000000000-00000 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Zhao X, Venkata SL, Moaddel R et al (2012) Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression. Br J Clin Pharmacol 74:304–314. doi: 10.1111/j.1365-2125.2012.04198.x CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Visser E, Schug SA (2006) The role of ketamine in pain management. Biomed Pharmacother 60:341–348. doi: 10.1016/j.biopha.2006.06.021 CrossRefPubMedGoogle Scholar
  12. 12.
    Blonk MI, Koder BG, van den Bemt PM, Huygen FJ (2010) Use of oral ketamine in chronic pain management: a review. Eur J Pain 14:466–472. doi: 10.1016/j.ejpain.2009.09.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Subramaniam K, Subramaniam B, Steinbrook RA (2004) Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 99:482–495. doi: 10.1213/01.ANE.0000118109.12855.07 CrossRefPubMedGoogle Scholar
  14. 14.
    Nesher N, Serovian I, Marouani N, Chazan S, Weinbroum AA (2008) Ketamine spares morphine consumption after transthoracic lung and heart surgery without adverse hemodynamic effects. Pharmacol Res 58:38–44. doi: 10.1016/j.phrs.2008.06.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Kharasch ED, Labroo R (1992) Metabolism of ketamine stereoisomers by human liver microsomes. Anesthesiology 77:1201–1207CrossRefPubMedGoogle Scholar
  16. 16.
    Grant IS, Nimmo WS, Clements JA (1981) Pharmacokinetics and analgesic effects of i.m. and oral ketamine. Br J Anaesth 53:805–810CrossRefPubMedGoogle Scholar
  17. 17.
    Clements JA, Nimmo WS, Grant IS (1982) Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci 71:539–542CrossRefPubMedGoogle Scholar
  18. 18.
    Yanagihara Y, Ohtani M, Kariya S et al (2003) Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy japanese volunteers. Biopharm Drug Dispos 24:37–43. doi: 10.1002/bdd.336 CrossRefPubMedGoogle Scholar
  19. 19.
    Chong C, Schug SA, Page-Sharp M, Jenkins B, Ilett KF (2009) Development of a sublingual/oral formulation of ketamine for use in neuropathic pain: preliminary findings from a three-way randomized, crossover study. Clin Drug Investig 29:317–324. doi: 10.2165/00044011-200929050-00004 CrossRefPubMedGoogle Scholar
  20. 20.
    Peltoniemi MA, Saari TI, Hagelberg NM et al (2012) Rifampicin has a profound effect on the pharmacokinetics of oral S-ketamine and less on intravenous S-ketamine. Basic Clin Pharmacol Toxicol 111:325–332. doi: 10.1111/j.1742-7843.2012.00908.x CrossRefPubMedGoogle Scholar
  21. 21.
    Yanagihara Y, Kariya S, Ohtani M et al (2001) Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 29:887–890PubMedGoogle Scholar
  22. 22.
    Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858CrossRefPubMedGoogle Scholar
  23. 23.
    Leung LY, Baillie TA (1986) Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine. J Med Chem 29:2396–2399CrossRefPubMedGoogle Scholar
  24. 24.
    White PF, Johnston RR, Pudwill CR (1975) Interaction of ketamine and halothane in rats. Anesthesiology 42:179–186CrossRefPubMedGoogle Scholar
  25. 25.
    White PF, Way WL, Trevor AJ (1982) Ketamine–its pharmacology and therapeutic uses. Anesthesiology 56:119–136CrossRefPubMedGoogle Scholar
  26. 26.
    Sigtermans M, Dahan A, Mooren R et al (2009) S(+)-ketamine effect on experimental pain and cardiac output: a population pharmacokinetic-pharmacodynamic modeling study in healthy volunteers. Anesthesiology 111:892–903. doi: 10.1097/ALN.0b013e3181b437b1 CrossRefPubMedGoogle Scholar
  27. 27.
    Persson J, Hasselstrom J, Maurset A et al (2002) Pharmacokinetics and non-analgesic effects of S- and R-ketamines in healthy volunteers with normal and reduced metabolic capacity. Eur J Clin Pharmacol 57:869–875CrossRefPubMedGoogle Scholar
  28. 28.
    White PF, Schuttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ (1985) Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth 57:197–203CrossRefPubMedGoogle Scholar
  29. 29.
    White M, de Graaff P, Renshof B, van Kan E, Dzoljic M (2006) Pharmacokinetics of S(+) ketamine derived from target controlled infusion. Br J Anaesth 96:330–334CrossRefPubMedGoogle Scholar
  30. 30.
    Ihmsen H, Geisslinger G, Schuttler J (2001) Stereoselective pharmacokinetics of ketamine: R(−)-ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther 70:431–438CrossRefPubMedGoogle Scholar
  31. 31.
    Pang KS, Rowland M (1977) Hepatic clearance of drugs. I. theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm 5:625–653CrossRefPubMedGoogle Scholar
  32. 32.
    Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 64:1147–1161. doi: 10.1007/s00228-008-0553-z CrossRefPubMedGoogle Scholar
  33. 33.
    Brunette KE, Anderson BJ, Thomas J, Wiesner L, Herd DW, Schulein S (2011) Exploring the pharmacokinetics of oral ketamine in children undergoing burns procedures. Paediatr Anaesth 21:653–662. doi: 10.1111/j.1460-9592.2011.03548.x CrossRefPubMedGoogle Scholar
  34. 34.
    Himmelseher S, Durieux ME (2005) Ketamine for perioperative pain management. Anesthesiology 102:211–220CrossRefPubMedGoogle Scholar
  35. 35.
    Loftus RW, Yeager MP, Clark JA et al (2010) Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology 113:639–646. doi: 10.1097/ALN.0b013e3181e90914 PubMedGoogle Scholar
  36. 36.
    Aan Het Rot M, Zarate CA Jr, Charney DS, Mathew SJ (2012) Ketamine for depression: where do we go from here? Biol Psychiatry 72:537–547. doi: 10.1016/j.biopsych.2012.05.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Samuel Fanta
    • 1
    • 2
  • Mari Kinnunen
    • 1
  • Janne T. Backman
    • 1
  • Eija Kalso
    • 3
  1. 1.Department of Clinical PharmacologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  2. 2.Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
  3. 3.Anesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations