European Journal of Clinical Pharmacology

, Volume 71, Issue 3, pp 271–281 | Cite as

Two-stage designs in bioequivalence trials

Review Article

Abstract

Purpose

The aim of this study is to assess the current status of non-fixed sample size designs in bioequivalence trials with a focus on two-stage adaptive approaches.

Methods

We searched PubMed and Google Scholar from inception to October 2014. Regulatory guidelines were obtained from the public domain. Different methods were compared by Monte Carlo simulations for their impact on the patient’s and producer’s risks.

Results

Add-on designs, group sequential designs and adaptive two-stage sequential designs are currently accepted to demonstrate bioequivalence in various regulations. All three approaches may inflate the patient’s risk if applied inconsiderately. Direct transfer of methods developed for superiority testing to bioequivalence is not warranted. Published two-stage frameworks maintain the type I error and generally the desired power. Adaptation based on the observed T/R ratio observed in the first stage should be applied with caution. Monte Carlo simulations are an efficient tool to explore the operating characteristics of methods.

Conclusions

Validated two-stage frameworks can be applied without requiring the sponsor to perform own simulations—which could further improve power based on additional assumptions. Two-stage designs are both ethical and economical alternatives to fixed sample designs.

Keywords

Two-stage designs Add-on designs Sequential designs Adaptive designs Bioequivalence 

Supplementary material

228_2015_1806_MOESM1_ESM.doc (80 kb)
ESM 1(DOC 79 kb)

References

  1. 1.
    Food and Drug Administration, Center for Drug Evaluation and Research (2003) Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products—general considerations. Revision 1. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070124.pdf Accessed 10 October 2014
  2. 2.
    European Medicines Agency, Committee for Medicinal Products for Human Use (2010) Guideline on the investigation of bioequivalence. CPMP/EWP/QWP/1401/98 Rev. 1. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf Accessed 10 October 2014
  3. 3.
    Schuirmann DJ(1987) A comparison of the Two One-Sided Test Procedure and the Power Approach for assessing equivalence of average bioavailability. J Pharmacokin Biopharm 15:657–660Google Scholar
  4. 4.
    McGilveray IJ, Midha KK, Skelly JP, Dighe S, Doluisio JT, French IW, Karim A, Burford R (1990) Consensus report from “Bio International ’89”: issues in the evaluation of bioavailability data. J Pharm Sci 79:945–946. doi:10.1002/jps.2600791022 CrossRefPubMedGoogle Scholar
  5. 5.
    Melander H (1992) Problems and possibilities with the add-on subject design. In: Midha KK, Blume HH (eds) Bio-International. Bioavailability, bioequivalence and pharmacokinetics. medpharm, Stuttgart, pp 85–90Google Scholar
  6. 6.
    Commission of the European Communities (1991) CPMP guideline: investigation of bioavailability and bioequivalence. 111/54/89_EN. http://www.clindesc.com/Guidelines_online/3 Clinical/3.1 General/3_1_2.pdf Accessed 10 October 2014
  7. 7.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (1998) ICH harmonised tripartite guideline: statistical principles for clinical trials (E9) http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E9/Step4/E9_Guideline.pdf Accessed 10 October 2014
  8. 8.
    Australian Department of Health, Therapeutic Goods Administration (2011) Guideline on the investigation of bioequivalenceGoogle Scholar
  9. 9.
    Health Canada, Therapeutic Products Directorate (2012) Guidance document: conduct and analysis of comparative bioavailability studies. http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/prodpharma/applic-demande/guide-ld/bio/gd_cbs_ebc_ld-eng.pdf Accessed 10 October 2014
  10. 10.
    Food and Drug Administration, Office of Generic Drugs (2012) Draft guidance on loteprednol etabonate; tobramycin. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM281453.pdf Accessed 10 October 2014
  11. 11.
    Food and Drug Administration, Center for Drug Evaluation and Research (2013) Draft Guidance for Industry: bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM377465.pdf Accessed 22 October 2014
  12. 12.
    Mironov AN, Kukes VG, Petrov VI, Kuznetsov AL, Goryachev DV, Niyazov RR, Prokofiev AB, Nedogoda SV, Frolov MY, Shnaider A (2013) Investigation of bioequivalence of generic medicinal products. In: Mironov AN (ed) Guidelines for clinical trials of drugs. Part 1. Grif and K, Moscow, pp 175–217Google Scholar
  13. 13.
    Food and Drug Administration, Center for Veterinary Medicine (2014) Draft guidance for industry: bioequivalence: blood level bioequivalence study. VICH GL52. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM415697.pdf Accessed 06 October 2014
  14. 14.
    Food and Drug Administration, Center for Veterinary Medicine (2014) Supplemental examples for illustrating statistical concepts described in the VICH in vivo bioequivalence draft guidance GL52. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM415701.pdf Accessed 06 October 2014
  15. 15.
    Executive Board of the Health Ministers’ Council for GCC States (2014) The GCC guidelines for bioequivalence. Version 2.3. http://www.sfda.gov.sa/en/drug/drug_reg/Regulations/The%20GCC%20Guidelines%20for%20Bioequivalence%20version%202.3%20GCC%20201.pdf Accessed 29 October 2014
  16. 16.
    SwissMedic (2014) AW-administrative ordinance: instruction authorisation of human medicines with known active pharmaceutical ingredients, 25 August 2014. https://www.swissmedic.ch/ueber/00134/00519/index.html?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDdX19fmym162epYbg2c_JjKbNoKSn6A-- Accessed 29 October 2014
  17. 17.
    European Agency for the Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products (2002) Points to consider on multiplicity issues in clinical trials. CPMP/EWP/908/99. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003640.pdf Accessed 10 October 2014
  18. 18.
    European Medicines Agency, Committee for Medicinal Products for Human Use (2012) Draft concept paper on the need for a guideline on multiplicity issues in clinical trials. EMA/286914/2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/05/WC500127901.pdf Accessed 10 October 2014
  19. 19.
    Food and Drug Administration, Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research (2010) Draft guidance for industry: adaptive design clinical trials for drugs and biologics. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf Accessed 2 November 2014
  20. 20.
    European Medicines Agency, Committee for Human Medicinal Products (2007) Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. CHMP/EWP/2459/02. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003616.pdf Accessed 2 November 2014
  21. 21.
    Schwartz TA, Denne JS (2003) Common threads between sample size recalculation and group sequential procedures. Pharm Stat 2:263–271. doi:10.1002/pst.068 CrossRefGoogle Scholar
  22. 22.
    Dragalin V (2006) Adaptive designs: terminology and classification. Drug Info J 40:425–435Google Scholar
  23. 23.
    Chow S-C, Chang M (2012) Adaptive design methods in clinical trials, 2nd edn. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  24. 24.
    Chin R (2012) Adaptive and flexible clinical trials. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  25. 25.
    BEBAC (2014) Guidelines & Guidance Documents. http://bebac.at/Guidelines.htm Accessed 29 October 2014
  26. 26.
    Labes D (2014) Power2Stage: power and sample size distribution of 2-stage BE studies via simulations. R package version 0.1-5. http://cran.r-project.org/web/packages/Power2Stage/ Accessed 11 October 2014
  27. 27.
    R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  28. 28.
    Health Canada, Therapeutic Products Directorate (1992) Guidance for industry: conduct and analysis of bioavailability and bioequivalence studies—Part A: oral dosage formulations used for systemic effectsGoogle Scholar
  29. 29.
    National Institute of Health Science, Division of Drugs (1997) Guideline for bioequivalence studies of generic products. http://www.nihs.go.jp/drug/be-guide(e)/Generic/be97E.pdf Accessed 27 October 2014
  30. 30.
    New Zealand Medicines and Medical Devices Safety Authority (2001) New Zealand Regulatory Guidelines for Medicines. vol 1, 5th ednGoogle Scholar
  31. 31.
    Patterson SD, Zariffa NM-D, Montague TH, Howland K (2001) Non-traditional study designs to demonstrate average bioequivalence for highly variable drug products. Eur J Clin Pharmacol 57:663–670. doi:10.1007/s002280100371 CrossRefPubMedGoogle Scholar
  32. 32.
    Van Peer A (2010) Variability and impact on design of bioequivalence studies. Basic Clin Pharmacol Toxicol 106:146–153. doi:10.1111/j.1742-7843.2009.00485.x CrossRefPubMedGoogle Scholar
  33. 33.
    Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (2006) Disposición ANMAT N° 5040/2006 (con la modificación de la Disp. ANMAT N° 1746/2007) http://www.anmat.gov.ar/webanmat/Legislacion/Medicamentos/Disposicion_ANMAT_5040-2006.pdf Accessed 29 October 2014
  34. 34.
    Armitage P, McPherson CK, Rowe BC (1969) Repeated significance tests on accumulating data. J R Stat Soc Ser A 132:235–244CrossRefGoogle Scholar
  35. 35.
    Armitage P (1991) Interim analysis in clinical trials. Stat Med 10:925–937CrossRefPubMedGoogle Scholar
  36. 36.
    McPherson K (1974) The problem of examining accumulating data more than once. N Engl J Med 290:501–502CrossRefPubMedGoogle Scholar
  37. 37.
    Wittes J, Schabenberger O, Zucker D, Brittain D, Proschan M (1999) Internal pilot studies I: type I error rate of the naive t-test. Stat Med 18:3481–3491CrossRefPubMedGoogle Scholar
  38. 38.
    Coffey CS, Muller KE (2001) Controlling test size while gaining the benefits of an internal pilot design. Biometrics 57:625–631CrossRefPubMedGoogle Scholar
  39. 39.
    Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ, Smith RA (2008) Sequential design approaches for bioequivalence studies with crossover designs. Pharm Stat 7:245–262. doi:10.1002/pst.294 CrossRefPubMedGoogle Scholar
  40. 40.
    Wonnemann M, Frömke C, Koch A (2014) Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs. Pharm Res. doi:10.1007/s11095-014-1450-z PubMedGoogle Scholar
  41. 41.
    National Institute of Health Science, Division of Drugs (2012) Guideline for bioequivalence studies of generic products. http://www.nihs.go.jp/drug/be-guide(e)/Generic/GL-E_120229_BE.pdf Accessed 27 October 2014
  42. 42.
    World Health Organization Expert Committee on Specifications for Pharmaceutical Preparations (2006) Annex 7. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability. Fortieth Report, WHO Technical Report Series 937, Geneva. http://apps.who.int/prequal/info_general/documents/TRS937/WHO_TRS_937__annex7_eng.pdf Accessed 27 October 2014
  43. 43.
    National Institute of Health Science, Division of Drugs (2006) Guideline for bioequivalence studies of generic products. http://www.nihs.go.jp/drug/be-guide(e)/be2006e.pdf Accessed 27 October 2014
  44. 44.
    Korea Food & Drug Administration (2008) Guidance document for bioequivalence study. Doc. No. 11-1470000-001738-14Google Scholar
  45. 45.
    Estados Unidos Mexicanos, Secretaría de Salud (2013) Norma Oficial Mexicana NOM-177-SSA1-2013, Que establece las pruebas y procedimientos para demostrar que un medicamento es intercambiable. Diario Oficial, 20 September 2013. http://www.cofepris.gob.mx/AS/SiteAssets/Paginas/Ensayos%20Cl%C3%ADnicos/Temas/Marco-Jur%C3%ADdico/NOM-177-SSA1-2013.pdf Accessed 24 October 2014
  46. 46.
    Australian Department of Health, Therapeutic Goods Administration (2004) Australian regulatory guidelines for prescription medicines. Appendix 15: Biopharmaceutic StudiesGoogle Scholar
  47. 47.
    Health Canada, Therapeutic Products Directorate (2009) Draft guidance document: conduct and analysis of comparative bioavailability studies. http://bebac.at/downloads/TPD%20Draft%20Guideline%20A+B%20Rev.%20V.2A.pdf Accessed 10 October 2014
  48. 48.
    Birkett MA, Day SJ (1994) Internal pilot studies for estimating sample size. Stat Med 13:2455–2463CrossRefPubMedGoogle Scholar
  49. 49.
    Schuirmann D (2000) Nexium (Esomeprazole Magnesium) Delayed-release capsules. NDA 21–153. Statistical Review. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/21154_Nexium_biopharmr_P2.pdf Accessed 26 October 2014
  50. 50.
    Pocock SJ (1977) Group sequential methods in the design and analysis of clinical trials. Biometrika 64:191–199CrossRefGoogle Scholar
  51. 51.
    Pocock SJ (1982) Interim analyses for randomized clinical trials: the group sequential approach. Biometrics 38:153–162CrossRefPubMedGoogle Scholar
  52. 52.
    Lan KG, DeMets DL (1983) Discrete sequential boundaries for clinical trials. Biometrika 70:659–663CrossRefGoogle Scholar
  53. 53.
    Hauck WW, Preston PE, Bois FY (1997) A group sequential approach to crossover trials for average bioequivalence. J Biopharm Stat 71:87–96. doi:10.1080/10543409708835171 CrossRefGoogle Scholar
  54. 54.
    Jennison C, Turnbull BW (1999) Equivalence tests. In: Jennison C, Turnbull BW (eds) Group sequential methods with applications to clinical trials. Chapman & Hall/CRC, Boca Raton, pp 142–157Google Scholar
  55. 55.
    Gould AL (1995) Group sequential extension of a standard bioequivalence testing procedure. J Pharmacokinet Biopharm 23:57–86. doi:10.1007/BF02353786 CrossRefPubMedGoogle Scholar
  56. 56.
    Montague TH, Potvin D, DiLiberti CE, Hauck WW, Parr AF, Schuirmann DJ (2011) Additional results for ‘sequential design approaches for bioequivalence studies with crossover designs’. Pharm Stat 11:8–13. doi:10.1002/pst.483 CrossRefPubMedGoogle Scholar
  57. 57.
    Fuglsang A (2013) Sequential bioequivalence trial designs with increased power and controlled type I error rates. AAPS J 15:659–661. doi:10.1208/s12248-013-9475-5 CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Fuglsang A (2014) Sequential bioequivalence approaches for parallel designs. AAPS J 16:373–378. doi:10.1208/s12248-014-9571-1 CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Karalis V, Macheras P (2013) An insight into the properties of a two-stage design in bioequivalence studies. Pharm Res 30:1824–1835. doi:10.1007/s11095-013-1026-3 CrossRefPubMedGoogle Scholar
  60. 60.
    Karalis V (2013) The role of the upper sample size limit in two-stage bioequivalence designs. Int J Pharm 456:87–94. doi:10.1016/j.ijpharm.2013.08.013
  61. 61.
    Cui L, Hung HMJ, Wang S-J (1999) Modification of sample size in group sequential clinical trials. Biometrics 55:853–857CrossRefPubMedGoogle Scholar
  62. 62.
    Fuglsang A (2014) Futility rules in bioequivalence trials with sequential designs. AAPS J 16:79–82. doi:10.1208/s12248-013-9540-0 CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Polli JE, Cook JA, Davit BM, Dickinson PA, Argenti D, Barbour N, García-Arieta A, Geoffroy J-M, Hartauer K, Li S, Mitra A, Muller FX, Purohit V, Sanchez-Felix M, Skoug JW, Tang K (2012) Summary workshop report: facilitating oral product development and reducing regulatory burden through novel approaches to assess bioavailability/bioequivalence. AAPS J 14:627–638. doi:10.1208/s12248-012-9376-z CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Fuglsang A (2011) Controlling type I errors for two-stage bioequivalence study designs. Clin Res Regul Aff 28:100–105. doi:10.3109/10601333.2011.631547 CrossRefGoogle Scholar
  65. 65.
    Bauer P, Köhne K (1994) Evaluation of experiments with adaptive interim analyses. Biometrics 50:1029–1041CrossRefPubMedGoogle Scholar
  66. 66.
    Lehmacher W, Wassmer G (1999) Adaptive sample size calculations in group sequential trials. Biometrics 55:1286–1290. doi:10.1111/j.0006-341X.1999.01286.x CrossRefPubMedGoogle Scholar
  67. 67.
    Tsong Y, Zhang JJ, Wang SJ (2004) Group sequential design and analysis of clinical equivalence assessment for generic nonsystematic drug products. J Biopharm Stat 14:359–373. doi 10.1081/BIP-120037186
  68. 68.
    Friede T, Kieser M (2006) Sample size recalculation in internal pilot study designs: a review. Biomet J 48:537–555. doi:10.1002/bimj.200510238 CrossRefGoogle Scholar
  69. 69.
    Golkowski D, Friede T, Kieser M (2014) Blinded sample size re-estimation in crossover bioequivalence trials. Pharm Stat 13:157–162. doi:10.1002/pst.1617 CrossRefPubMedGoogle Scholar
  70. 70.
    Jones B, Kenward MG (2014) Chapters 12–14. In: Jones B, Kenward MG (eds) Design and analysis of cross-over trials, 3rd edn. Chapman & Hall/CRC, Boca Raton, pp 365–380Google Scholar
  71. 71.
    García-Arieta A, Gordon J (2012) Bioequivalence requirements in the European Union: critical discussion. AAPS J 14:738–748. doi:10.1208/s12248-012-9382-1 CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Zariffa NM-D, Patterson SD, Boyle D, Hyneck M (2000) Case studies, practical issues and observations on population and individual bioequivalence. Stat Med 19:2811–2820CrossRefPubMedGoogle Scholar
  73. 73.
    European Medicines Agency, Committee for Human Medicinal Products (2013) Questions and answers: positions on specific questions addressed to the pharmacokinetics working party. EMA/618604/2008 Rev. 7. http://bebac.at/downloads/WC500002963Feb2013.pdf Accessed 22 October 2014
  74. 74.
    Karalis V, Macheras P (2014) On the statistical model of the two-stage designs in bioequivalence assessment. J Pharm Pharmacol 66:48–52. doi:10.1111/jphp.12164 CrossRefPubMedGoogle Scholar
  75. 75.
    O’Brien PC, Fleming TR (1979) A multiple testing procedure for clinical trials. Biometrics 35:549–556CrossRefPubMedGoogle Scholar
  76. 76.
    Haybittle JL (1971) Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol 44:793–797. doi:10.1259/0007-1285-44-526-793 CrossRefPubMedGoogle Scholar
  77. 77.
    Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG (1977) Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br J Cancer 35:2–39. doi:10.1038/bjc.1977.1 Google Scholar
  78. 78.
    European Generic Medicines Association (2010) Revised EMA bioequivalence guideline. questions and answers. Summary of the discussions held at the 3rd EGA Symposium on Bioequivalence. http://www.egagenerics.com/images/Website/EGA_BEQ_QA_WEB_QA_1_32.pdf Accessed 31 October 2014
  79. 79.
    Fuglsang A (2014) A sequential bioequivalence design with a potential ethical advantage. AAPS J 16:843–846. doi:10.1208/s12248-014-9622-7 CrossRefPubMedGoogle Scholar
  80. 80.
    Fenta HM (2014) Determination of sample size for two stage sequential designs in bioequivalence studies under 2 × 2 crossover design. Sci J Clin Med 3:82–90. doi:10.11648/j.sjcm.20140305.12
  81. 81.
    Bandyopadhyay N, Dragalin V (2007) Implementation of an adaptive group sequential design in a bioequivalence study. Pharm Stat 6:115–122. doi:10.1002/pst.252 CrossRefPubMedGoogle Scholar
  82. 82.
    Du D, Targett D, Stolberg E, Canali A (2013) A clinical pharmacokinetic study comparing two azelastine hydrochloride nasal formulations in a single-dose design. Eur J Drug Metab Pharmacokinet 39:69–75. doi:10.1007/s13318-013-0134-0 CrossRefPubMedGoogle Scholar
  83. 83.
    Zheng C, Wang J, Zhao L (2012) Testing bioequivalence for multiple formulations with power and sample size calculations. Pharm Stat 2012:334–341. doi:10.1002/pst.1522 CrossRefGoogle Scholar
  84. 84.
    Jennison C, Turnbull BW(2003) Mid-course sample size modification in clinical trials based on the observed treatment effect. Stat Med 22:971–993. doi:10.1002/sim.1457
  85. 85.
    Tsiatis AA, Mehta C (2003) On the inefficiency of the adaptive design for monitoring clinical trials. Biometrika 90:367–378. doi:10.1093/biomet/90.2.367 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.BEBACViennaAustria

Personalised recommendations