European Journal of Clinical Pharmacology

, Volume 70, Issue 2, pp 147–154 | Cite as

Tadalafil-induced improvement in left ventricular diastolic function in resistant hypertension

  • Rodrigo C. Santos
  • Ana Paula C. de Faria
  • Natália R. Barbaro
  • Rodrigo Modolo
  • Silvia E. Ferreira-Melo
  • José R. Matos-Souza
  • Otávio R. Coelho
  • Juan C. Yugar-Toledo
  • Vanessa Fontana
  • David Calhoun
  • Heitor Moreno
Clinical Trial

Abstract

Purpose

Left ventricular hypertrophy and diastolic dysfunction (LVDD) remain highly frequent markers of cardiac damage and risk of progression to symptomatic heart failure, especially in resistant hypertension (RHTN). We have previously demonstrated that administration of sildenafil in hypertensive rats improves LVDD, restoring phosphodiesterase type 5 (PDE-5) inhibition in cardiac myocytes.

Methods

We hypothesized that the long-acting PDE-5 inhibitor tadalafil may be clinically useful in improving LVDD in RHTN independently of blood pressure (BP) reduction. A single blinded, placebo-controlled, crossover study enrolled 19 patients with both RHTN and LVDD. Firstly, subjects received tadalafil (20 mg) for 14 days and after a 2-week washout period, they received placebo orally for 14 days. Patients were evaluated by office BP and ambulatory BP monitoring (ABPM), endothelial function (FMD), echocardiography, plasma brain natriuretic peptide (BNP-32), cyclic guanosine monophosphate (cGMP) and nitrite levels.

Results

No significant differences were detected in BP measurements. Remarkably, at least four echocardiographic parameters related with diastolic function improved accompanied by decrease in BNP-32 in tadalafil use. Although increasing cGMP, tadalafil did not change endothelial function or nitrites. There were no changes in those parameters after placebo.

Conclusion

The current findings suggest that tadalafil improves LV relaxation through direct effects PDE-5-mediated in the cardiomyocytes with potential benefit as an adjunct to treat symptomatic subjects with LVDD such as RHTN patients.

Keywords

Refractory hypertension PDE5-inhibitors Left ventricular diastolic function 

Notes

Acknowledgments

This study was supported by the State of São Paulo Research Foundation (Fapesp) and National Council for Scientific and Technological Development (CNPq), Brazil.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM (2008) Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 117:e510–e526PubMedCrossRefGoogle Scholar
  2. 2.
    Salles GF, Cardoso CR, Fiszman R, Muxfeldt ES (2010) Prognostic impact of baseline and serial changes in electrocardiographic left ventricular hypertrophy in resistant hypertension. Am Heart J 159:833–840PubMedCrossRefGoogle Scholar
  3. 3.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202PubMedCrossRefGoogle Scholar
  4. 4.
    Kohno M, Horio T, Yokokawa K, Murakawa K, Yasunari K, Akioka K, Tahara A, Toda I, Takeuchi K, Kurihara N et al (1992) Brain natriuretic peptide as a cardiac hormone in essential hypertension. Am J Med 92:29–34PubMedCrossRefGoogle Scholar
  5. 5.
    Ubaid-Girioli S, Adriana de Souza L, Yugar-Toledo JC, Martins LC, Ferreira-Melo S, Coelho OR, Sierra C, Coca A, Pimenta E, Moreno H (2009) Aldosterone excess or escape: treating resistant hypertension. J Clin Hypertens (Greenwich) 11:245–252CrossRefGoogle Scholar
  6. 6.
    Schwartz BG, Levine LA, Comstock G, Stecher VJ, Kloner RA (2012) Cardiac uses of phosphodiesterase-5 inhibitors. J Am Coll Cardiol 59:9–15PubMedCrossRefGoogle Scholar
  7. 7.
    Oliver JJ, Melville VP, Webb DJ (2006) Effect of regular phosphodiesterase type 5 inhibition in hypertension. Hypertension 48:622–627PubMedCrossRefGoogle Scholar
  8. 8.
    Wolk R, Smith WB, Neutel JM, Rubino J, Xuan D, Mancuso J, Gilbert J, Pressler ML (2009) Blood pressure lowering effects of a new long-acting inhibitor of phosphodiesterase 5 in patients with mild to moderate hypertension. Hypertension 53:1091–1097PubMedCrossRefGoogle Scholar
  9. 9.
    Oliver JJ, Hughes VE, Dear JW, Webb DJ (2010) Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment-resistant hypertension. Hypertension 56:62–67PubMedCrossRefGoogle Scholar
  10. 10.
    Pokreisz P, Vandenwijngaert S, Bito V, Van den Bergh A, Lenaerts I, Busch C, Marsboom G, Gheysens O, Vermeersch P, Biesmans L, Liu X, Gillijns H, Pellens M, Van Lommel A, Buys E, Schoonjans L, Vanhaecke J, Verbeken E, Sipido K, Herijgers P, Bloch KD, Janssens SP (2009) Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119:408–416PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zhang M, Koitabashi N, Nagayama T, Rambaran R, Feng N, Takimoto E, Koenke T, O'Rourke B, Champion HC, Crow MT, Kass DA (2008) Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell Signal 20:2231–2236PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ferreira-Melo SE, Demacq C, Lacchini S, Krieger JE, Irigoyen MC, Moreno H (2011) Sildenafil preserves diastolic relaxation after reduction by L-NAME and increases phosphodiesterase-5 in the intercalated discs of cardiac myocytes and arterioles. Clinics (Sao Paulo) 66:1253–1258CrossRefGoogle Scholar
  13. 13.
    Quinaglia T, de Faria AP, Fontana V, Barbaro NR, Sabbatini AR, Sertorio JT, Demacq C, Tanus-Santos JE, Moreno H (2013) Acute cardiac and hemodynamic effects of sildenafil on resistant hypertension. Eur J Clin Pharmacol. In press.Google Scholar
  14. 14.
    Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, Lorenzi-Filho G (2010) Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol 105:1135–1139PubMedCrossRefGoogle Scholar
  15. 15.
    Alessi A, Brandao AA, Coca A, Cordeiro AC, Nogueira AR, Diogenes de Magalhaes F, Amodeo C, Saad Rodrigues CI, Calhoun DA, Barbosa Coelho E, Pimenta E, Muxfeldt E, Consolin-Colombo FM, Salles G, Rosito G, Moreno H Jr, Martin JF, Yugar JC, Aparecido Bortolotto L, Nazario Scala LC, Goncalves de Sousa M, Gomes MA, Malachias MB, Gus M, Passarelli O Jr, Jardim PC, Toscano PR, Sanchez RA, Dischinger Miranda R, Povoa R, Barroso WK (2012) First Brazilian position on resistant hypertension. Arq Bras Cardiol 99:576–585PubMedCrossRefGoogle Scholar
  16. 16.
    Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265PubMedCrossRefGoogle Scholar
  17. 17.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463PubMedCrossRefGoogle Scholar
  18. 18.
    Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF (2003) Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity. Am J Cardiol 91:780–784PubMedCrossRefGoogle Scholar
  19. 19.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail 4:8–17PubMedCrossRefGoogle Scholar
  20. 20.
    Kukreja RC, Salloum F, Das A, Ockaili R, Yin C, Bremer YA, Fisher PW, Wittkamp M, Hawkins J, Chou E, Kukreja AK, Wang X, Marwaha VR, Xi L (2005) Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol 42:219–232PubMedCrossRefGoogle Scholar
  21. 21.
    Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA (2005) Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation 112:2642–2649PubMedCrossRefGoogle Scholar
  22. 22.
    Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563PubMedCrossRefGoogle Scholar
  23. 23.
    Reffelmann T, Kloner RA (2006) Cardiovascular effects of phosphodiesterase 5 inhibitors. Curr Pharm Des 12:3485–3494PubMedCrossRefGoogle Scholar
  24. 24.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222PubMedCrossRefGoogle Scholar
  25. 25.
    Jiang H, Colbran JL, Francis SH, Corbin JD (1992) Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 267:1015–1019PubMedGoogle Scholar
  26. 26.
    Wang H, Kohr MJ, Traynham CJ, Ziolo MT (2009) Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes. J Mol Cell Cardiol 47:304–314PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101:1084–1095PubMedCrossRefGoogle Scholar
  29. 29.
    Ceyhan C, Unal S, Yenisey C, Tekten T, Ceyhan FB (2008) The role of N terminal pro-brain natriuretic peptide in the evaluation of left ventricular diastolic dysfunction: correlation with echocardiographic indexes in hypertensive patients. Int J Cardiovasc Imaging 24:253–259PubMedCrossRefGoogle Scholar
  30. 30.
    Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M (1998) Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 135:825–832PubMedCrossRefGoogle Scholar
  31. 31.
    Katz DH, Beussink L, Sauer AJ, Freed BH, Burke MA, Shah SJ (2013) Prevalence, clinical characteristics, and outcomes associated with eccentric versus concentric left ventricular hypertrophy in heart failure with preserved ejection fraction. Am J Cardiol 112:1158–1164PubMedCrossRefGoogle Scholar
  32. 32.
    Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550PubMedCrossRefGoogle Scholar
  33. 33.
    Dejam A, Hunter CJ, Pelletier MM, Hsu LL, Machado RF, Shiva S, Power GG, Kelm M, Gladwin MT, Schechter AN (2005) Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood 106:734–739PubMedCrossRefGoogle Scholar
  34. 34.
    Pelletier MM, Kleinbongard P, Ringwood L, Hito R, Hunter CJ, Schechter AN, Gladwin MT, Dejam A (2006) The measurement of blood and plasma nitrite by chemiluminescence: pitfalls and solutions. Free Radic Biol Med 41:541–548PubMedCrossRefGoogle Scholar
  35. 35.
    Figueiredo VN, Yugar-Toledo JC, Martins LC, Martins LB, de Faria AP, de Haro MC, Sierra C, Coca A, Moreno H (2012) Vascular stiffness and endothelial dysfunction: correlations at different levels of blood pressure. Blood Press 21:31–38PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rodrigo C. Santos
    • 1
  • Ana Paula C. de Faria
    • 1
  • Natália R. Barbaro
    • 1
  • Rodrigo Modolo
    • 1
  • Silvia E. Ferreira-Melo
    • 1
  • José R. Matos-Souza
    • 1
  • Otávio R. Coelho
    • 1
  • Juan C. Yugar-Toledo
    • 2
  • Vanessa Fontana
    • 1
  • David Calhoun
    • 3
  • Heitor Moreno
    • 1
    • 4
  1. 1.Faculty of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.State Medical School at São José do Rio Preto (FAMERP)São José do Rio PretoBrazil
  3. 3.Division of Cardiovascular Disease, Vascular Biology, and Hypertension ProgramUniversity of Alabama at BirminghanBirminghanUSA
  4. 4.Laboratory of Cardiovascular PharmacologyUniversity of CampinasCampinasBrazil

Personalised recommendations