European Journal of Clinical Pharmacology

, Volume 69, Issue 7, pp 1375–1390

N-acetylcysteine for the prevention of non-contrast media agent-induced kidney injury: from preclinical data to clinical evidence

  • Hesamoddin Hosseinjani
  • Azadeh Moghaddas
  • Hossein Khalili
Review Article



To review available evidence on the effectiveness of N-acetylcysteine (NAC) as a prophylactic agent in the prevention of non-contrast media agent-induced kidney injury.


Data were collected by searching Scopus, PubMed, Medline, Science direct and Cochrane database systematic reviews. A total of 26 relevant experimental studies up to the date of publication were included in the review.


Available evidence shows that NAC has the potential to exert significant protective or ameliorative effects against drug-induced kidney injury in experimental models. The possible suggested renoprotective mechanisms of NAC in different experimental settings were acting as an antioxidant by restoring the pool of intracellular reduced glutathione, scavenging of free radicals, and/or interacting with reactive oxygen species.


Whether the administration of NAC could be an effective protective clinical strategy to prevent drug-induced kidney injury or not is a question that remains to be answered in future clinical trials.


N-acetylcysteine Drug-induced kidney injury Renoprotective mechanisms Ameliorative effects 


  1. 1.
    Grinberg L, Fibach E, Amer J, Atlas D (2005) N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med 38:136–145PubMedCrossRefGoogle Scholar
  2. 2.
    De Flora S, Izzotti A, D’Agostini F, Balansky RM (2001) Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22:999–1013PubMedCrossRefGoogle Scholar
  3. 3.
    Harrison PM, Wendon YA, Gimson AES (1991) Improvement of hemodynamics by acetylcysteine and oxygen transport in fulminant hepatic failure. N Engl J Med 324:1852–1857PubMedCrossRefGoogle Scholar
  4. 4.
    Zachwieja J, Zaniew M, Bobkowski W, Stefaniak E, Warzywoda A, Ostalska-Nowicka D et al (2005) Beneficial in vitro effect of N-acetyl-cysteine on oxidative stress and apoptosis. Pediatr Nephrol 20:725–731PubMedCrossRefGoogle Scholar
  5. 5.
    Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20PubMedCrossRefGoogle Scholar
  6. 6.
    Erdogan H, Fadillioglu E, Yagmurca M, Uçar M, Irmak MK (2006) Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urol Res 34:41–46PubMedCrossRefGoogle Scholar
  7. 7.
    Kim J, Jang HS, Park KM (2010) Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am J Physiol Renal Physiol 298:58–66Google Scholar
  8. 8.
    Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the kidney. Am J Physiol Renal Physiol 251:765–776Google Scholar
  9. 9.
    Nath KA, Norby SM (2000) Reactive oxygen species and acute renal failure. Am J Med 109:665–678PubMedCrossRefGoogle Scholar
  10. 10.
    McCullough P (2008) Radiocontrast-induced acute kidney injury. Nephron Physiol 109:61–79CrossRefGoogle Scholar
  11. 11.
    Heyman S, Goldfarb M, Shina A, Karmeli F, Rosen S (2003) N-acetylcysteine ameliorates renal microcirculation: studies in rats. Kidney Int 63:634–641PubMedCrossRefGoogle Scholar
  12. 12.
    Beretta S, Sala G, Mattavelli L, Ceresa C, Casciati A, Ferri A et al (2003) Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol Dis 13:213–221PubMedCrossRefGoogle Scholar
  13. 13.
    Cuzzocrea S, Mazzon E, Costantino G, Serraino I, De Sarro A, Caputi AP (2000) Effects of N-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovasc Res 47:537–548PubMedCrossRefGoogle Scholar
  14. 14.
    Fishbane S, Durham JH, Marzo K, Rudnick M (2004) N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol 15:251–260PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffmann U, Banas B, Fischereder M, Krämer BK (2004) N-acetylcysteine in the prevention of radiocontrast-induced nephropathy: clinical trials and end points. Kidney Blood Press Res 27:161–166PubMedCrossRefGoogle Scholar
  16. 16.
    McDavid A (2012) Should N-acetylcysteine be used for contrast-induced nephropathy? Department of Pharmacy, Cleveland Clinic, OhioGoogle Scholar
  17. 17.
    Huber W, Schilling C, Wacker A, Hennig M, Greiner L, Rutz T et al (2005) Prophylaxis of contrast-induced nephropathy in patients with impaired renal function: double-blind comparison of acetylcysteine, theophylline, acetylcysteine + theophylline and placebo. Crit Care 9:353CrossRefGoogle Scholar
  18. 18.
    Demir S, Inal-Erden M (1998) Pentoxifylline and N-acetylcysteine in hepatic ischemia/reperfusion injury. Clin Chim Acta 275:127–135PubMedCrossRefGoogle Scholar
  19. 19.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 47:446–456PubMedCrossRefGoogle Scholar
  20. 20.
    Agarwal R, Vasavada N, Saches NG, Chase S (2004) Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int 65:2279–2289PubMedCrossRefGoogle Scholar
  21. 21.
    Davis HL, Davis TE (1979) Daunorubicin and adriamycin in cancer treatment: an analysis of their roles and limitations. Cancer Treat Rep 63:809–815PubMedGoogle Scholar
  22. 22.
    Lee VW, Harris DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrol 16:30–38CrossRefGoogle Scholar
  23. 23.
    Sang-Woong H, Ho-Jung K, Seung Sam P, JongUn L (2005) Protective effect of N-acetylcysteine on progression of adriamycin induced nephropathy. Korean J Physiol Pharmacol 9:159–164Google Scholar
  24. 24.
    Schoenike SE, Dana WJ (1990) Ifosfamide and mesna. Clin Pharm 9:179–191PubMedGoogle Scholar
  25. 25.
    Heney D, Wheeldon J, Rushworth P, Chapman C, Lewis IJ, Bailey CC (1991) Progressive renal toxicity due to ifosfamide. Arch Dis Child 66:966–970PubMedCrossRefGoogle Scholar
  26. 26.
    Loebstein R, Koren G (1998) Ifosfamide-induced nephrotoxicity in children: critical review of predictive risk factors. Pediatrics 101:E8–E12PubMedCrossRefGoogle Scholar
  27. 27.
    Berns JS, Haghighat A, Staddon A, Cohen RM, Schmidt R, Fisher S et al (1995) Severe, irreversible renal failure after ifosfamide treatment. A clinicopathologic report of two patients. Cancer 76:497–500PubMedCrossRefGoogle Scholar
  28. 28.
    Kim SH, Nam SM, Yoon HE, Kim YK, Park EY, Kim WY et al (2008) Selective proximal tubule injury and progressive renal failure due to ifosfamide and cisplatin in a patient with ovarian cancer. Korean J Nephrol 27:513–517Google Scholar
  29. 29.
    El-Sisi AE, El-Syaad ME, El-Desoky KI, Moussa EA (2013) Protective effects of alpha lipoic acid versus N-acetylcysteine on ifosfamide-induced nephrotoxicity. Toxicol Ind Health. doi:10.1177/0748233712469649
  30. 30.
    Chen N, Aleksa K, Woodland C, Rieder M, Koren G (2007) The effect of N-acetylcysteine on ifosfamide-induced nephrotoxicity: in vitro studies in renal tubular cells. Transl Res 150(1):51–57PubMedCrossRefGoogle Scholar
  31. 31.
    Chen N, Aleksa K, Woodland C, Rieder M, Koren G (2007) Prevention of ifosfamid nephrotoxicity by N-acetylcysteine: clinical pharmacokinetic considration. Can J Clin Pharmacol 14:e246–e250PubMedGoogle Scholar
  32. 32.
    Chen N, Aleksa K, Woodland C, Rieder MJ, Koren G (2008) N-acetylcysteine prevents ifosfamide-induced nephrotoxicity in rats. Br J Pharmacol 153:1364–1372PubMedCrossRefGoogle Scholar
  33. 33.
    Hanly LN, Chen N, Aleksa K, Cutler M, Bajcetic M, Palassery R et al (2012) N-acetylcysteine as a novel prophylactic treatment for ifosfamide-induced nephrotoxicity in children: translational pharmacokinetics. J Clin Pharmacol 52:55–64Google Scholar
  34. 34.
    Choi BK, Choi CH, Oh HL, Kim YK (2004) Role of ERK activation in cisplatin-induced apoptosis in A172 human glioma cells. Neurotoxicology 25:915–924PubMedCrossRefGoogle Scholar
  35. 35.
    McEvoy GK (ed) (2006) Antineoplastic agents cisplatin. In: AHFS drug information. American Society of Health System Pharmacists, Bethesda, pp 979–994Google Scholar
  36. 36.
    Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007PubMedCrossRefGoogle Scholar
  37. 37.
    Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124PubMedCrossRefGoogle Scholar
  38. 38.
    Amany AA, Eman ID, Naglaa IS (2008) Evaluation of chemoprotective role of N-acetylcysteine on cisplatin-induced nephrotoxicity: new aspect of an old drug. Int J Pharmacol 4:339–351CrossRefGoogle Scholar
  39. 39.
    Abdelrahman AM, AlSalam S, AlMahruqi AS, Alhusseni IS, Mansourd MA, Alia BH (2010) N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity. J Appl Toxicol 30:15–21PubMedCrossRefGoogle Scholar
  40. 40.
    Appenroth D, Winnefeld K, Schroter H, Rost M (1993) Beneficial effect of acetylcysteine on cisplatin nephrotoxicity in rats. J Appl Toxicol 13:189–192PubMedCrossRefGoogle Scholar
  41. 41.
    Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A (2008) The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant 23:2198–2205PubMedCrossRefGoogle Scholar
  42. 42.
    Luo J, Yang Y, Yasuda H, Hishida A (2011) Protective effect of N-acetylcysteine on cisplatin-induced acute Kidney injury related to p38MAPK pathway in rats. Chinese Pharmacol Bull 2011-02Google Scholar
  43. 43.
    Dickey DT, Wu YJ, Muldoon LL, Neuwelt EA (2005) Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. JPET 314:1052–1058CrossRefGoogle Scholar
  44. 44.
    Burdmann EA, Andoh TF, Yu L, Bennett WM (2003) Cyclosporine nephrotoxicity. Semin Nephrol 23:465–476PubMedCrossRefGoogle Scholar
  45. 45.
    Fellstrom B (2004) Cyclosporine nephrotoxicity. Transplant Proc 36:220S–223SPubMedCrossRefGoogle Scholar
  46. 46.
    Yoon HE, Yang CW (2009) Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J Intern Med 24:81–92PubMedCrossRefGoogle Scholar
  47. 47.
    Duru M, Nacar A, Yönden Z, Kuvandik G, Helvaci MR, Koç A (2008) Protective effects of N-acetylcysteine on cyclosporine-A-induced nephrotoxicity. Ren Fail 30:453–459PubMedCrossRefGoogle Scholar
  48. 48.
    Haleagrahara N, Yee TM, Chakravarthi S, Lee N (2009) Protective effect of N-acetylcysteine on cyclosporine A-induced changes in lipid hydroperoxide levels and renal dysfunction in rats. Arch Med Sci 1:16–22Google Scholar
  49. 49.
    Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703PubMedCrossRefGoogle Scholar
  50. 50.
    Fong CM, Lee AC (2006) High-dose methotrexate-associated acute renal failure may be an avoidable complication. Pediatr Hematol Oncol 23:51–57PubMedCrossRefGoogle Scholar
  51. 51.
    Çağlar Y, Özgür H, Matur I, Yenilmez ED, Tuli A, Gönlüsen G et al. (in press) Ultrastractural evaluation of NAC on methotraxate nephrotoxicity in rats. Histol HistopatholGoogle Scholar
  52. 52.
    Karahan I, Atessahin A, Yilmaz S et al (2005) Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology 215:198–204PubMedCrossRefGoogle Scholar
  53. 53.
    Ali BH, Za’abi MA, Blunden G, Nemmar A (2011) Experimental gentamicin nephrotoxicity and agents that modify it: a mini-review of recent research. Basic Clin Pharmacol Toxicol 109:225–232PubMedCrossRefGoogle Scholar
  54. 54.
    Walker PD, Barri Y, Shah SV (1999) Oxidant mechanisms in gentamicin nephrotoxicity. Ren Fail 21:433–442PubMedCrossRefGoogle Scholar
  55. 55.
    Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez-Hernandez FJ (2011) An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol Sci 119:245–256PubMedCrossRefGoogle Scholar
  56. 56.
    Mazzon E, Britti D, De Sarro A, Caputi AP, Cuzzocrea S (2001) Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats. Eur J Pharmacol 424:75–83PubMedCrossRefGoogle Scholar
  57. 57.
    Petronilho F, Constantino L, de Souza B, Reinke A, Martins MR, Fraga CM et al (2009) Efficacy of the combination of N-acetylcysteine and desferrioxamine in the prevention and treatment of gentamicin-induced acute renal failure in male Wistar rats. Nephrol Dial Transplant 24:2077–2082PubMedCrossRefGoogle Scholar
  58. 58.
    Nishino Y, Takemura S, Minamiyama Y et al (2003) Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res 37:373–379PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta A, Biyani M, Khaira A (2011) Vancomycin nephrotoxicity: myths and facts. Neth J Med 69:379–383PubMedGoogle Scholar
  60. 60.
    Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A (2012) Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 68:1243–1255PubMedCrossRefGoogle Scholar
  61. 61.
    Ocak S, Gorur S, Hakverdi S, Celik S, Erdogan S (2007) Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-acetylcysteine on vancomycin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 100:328–333PubMedCrossRefGoogle Scholar
  62. 62.
    Ozyilmaz E, Ebinc FA, Derici U, Gulbahar O, Goktas G, Elmas C et al (2011) Could nephrotoxicity due to colistin be ameliorated with the use of N-acetylcysteine? Intensive Care Med 37:141–146PubMedCrossRefGoogle Scholar
  63. 63.
    Kwon JA, Lee JE, Huh W, Peck KR, Kim YG, Kim DJ et al (2010) Predictors of acute kidney injury associated with intravenous colistin treatment. Int J Antimicrob Agents 35:473–477PubMedCrossRefGoogle Scholar
  64. 64.
    Turkoglu M, Dizbay M, Ciftci A, Aksakal FN, Aygencel G (2012) Colistin therapy in critically ill patients with chronic renal failure and its effect on development of renal dysfunction. Int J Antimicrob Agents 39:142–145PubMedCrossRefGoogle Scholar
  65. 65.
    Feldman L, Efrati S, Dishy V, Katchko L, Berman S, Averbukh M (2005) N-acetylcysteine ameliorates amphotericin-induced nephropathy in rats. Nephron Physiol 99:23–27CrossRefGoogle Scholar
  66. 66.
    Sawaya BP, Briggs JP, Schnermann J (1995) Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol 6:154–164PubMedGoogle Scholar
  67. 67.
    Odabasi Z, Karaalp A, Cermik H, Mohr J, Tigen ET, Koc M et al (2009) Reduction of amphotericin B-induced renal tubular apoptosis by N-acetylcysteine. Antimicrob Ag Chemother 53:3100–3102CrossRefGoogle Scholar
  68. 68.
    Costa S, Nucci M (2001) Can we decrease amphotericin nephrotoxicity? Curr Opin Crit Care 7:379–383PubMedCrossRefGoogle Scholar
  69. 69.
    Kleinknecht D, Landais P, Goldfarb B (1986) Analgesic and nonsteroidal anti-inflammatory drug-associated acute renal failure: a prospective collaborative study. Clin Nephrol 25:275–281PubMedGoogle Scholar
  70. 70.
    Eras J, Perazella MA (2001) NSAIDs and the kidney revisited: are selective cyclooxygenase-2 inhibitors safe? Am J Med Sci 321:181–190PubMedCrossRefGoogle Scholar
  71. 71.
    Musu M, Finco G, Antonucci R, Polati E, Sanna D, Evangelista M et al (2011) Acute nephrotoxicity of NSAID from the foetus to the adult. Eur Rev Med Pharmacol Sci 15:1461–1472PubMedGoogle Scholar
  72. 72.
    Ejaz P, Bhojani K, Joshi VR (2004) NSAIDs and kidney. J Assoc Physicians India 52:632–640PubMedGoogle Scholar
  73. 73.
    Weir MR (2002) Renal effects of nonselective NSAIDs and coxibs. Cleve Clin J Med 69:SI53–SI58PubMedCrossRefGoogle Scholar
  74. 74.
    Efrati S, Berman S, Siman-Tov Y, Lotan R, Averbukh Z, Weissgarten J (2007) N-acetylcysteine attenuates NSAID-induced rat renal failure by restoring intrarenal prostaglandin synthesis. Nephrol Dial Transplant 22:1873–1881PubMedCrossRefGoogle Scholar
  75. 75.
    McKnight RF, Adida M, Budge K, Stockton S, Goodwin GM, Geddes JR (2012) Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379:721–728PubMedCrossRefGoogle Scholar
  76. 76.
    Oliveira JL, Silva Júnior GB, Abreu KL, Rocha Nde A, Franco LF, Araújo SM et al (2010) Lithium nephrotoxicity. Rev Assoc Med Bras 56:600–606PubMedCrossRefGoogle Scholar
  77. 77.
    Trepiccione F, Christensen BM (2010) Lithium-induced nephrogenic diabetes insipidus: new clinical and experimental findings. J Nephrol 23:S43–S48PubMedGoogle Scholar
  78. 78.
    Efrati S, Averbukh M, Berman S, Feldman L, Dishy V, Kachko L et al (2005) N-acetylcysteine ameliorates lithium-induced renal failure in rats. Nephrol Dial Transplant 20:65–70PubMedCrossRefGoogle Scholar
  79. 79.
    Zoungas S, McGrath BP, Branley P, Kerr PG, Muske C, Wolfe R (2006) Cardiovascular morbidity and mortality in the atherosclerosis and folic Acid Supplementation Trial (ASFAST) in chronic renal failure. J Am Coll Cardiol 47:1108–1116PubMedCrossRefGoogle Scholar
  80. 80.
    Bennett-Richards K, Kattenhorn M, Donald A, Oakley G, Varghese Z, Rees L (2002) Does oral folic acid lower total homocysteine levels and improve endothelial function in children with chronic renal failure? Circulation 105:1810–1815PubMedCrossRefGoogle Scholar
  81. 81.
    Kang HG, Lee BS, Hahn H, Lee JH, Ha IS, Cheong HI (2002) Reduction of plasma homocysteine by folic acid in children with chronic renal failure. Pediatr Nephrol 17:511–514PubMedCrossRefGoogle Scholar
  82. 82.
    Bernasconi AR, Liste A, Del Pino N, Rosa Diez GJ, Heguilén RM (2006) Folic acid 5 or 15 mg/day similarly reduces plasma homocysteine in patients with moderate–advanced chronic renal failure. Nephrology 11:137–141PubMedCrossRefGoogle Scholar
  83. 83.
    Thambyrajah J, Landray MJ, McGlynn FJ, Jones HJ, Wheeler DC, Townend JN (2000) Does folic acid decrease plasma homocysteine and improve endothelial function in patients with predialysis renal failure? Circulation 102:871–875PubMedCrossRefGoogle Scholar
  84. 84.
    Naruszewicz M, Klinke M, Dziewanowski K, Staniewicz A, Bukowska H (2001) Homocysteine, fibrinogen, and lipoprotein(a) levels are simultaneously reduced in patients with chronic renal failure treated with folic acid, pyridoxine, and cyanocobalamin. Metabolism 50:131–134PubMedCrossRefGoogle Scholar
  85. 85.
    Wang HZ, Peng ZY, Wen XY, Rimmelé T, Bishop JV, Kellum JA (2011) N-acetylcysteine is effective for prevention but not for treatment of folic acid-induced acute kidney injury in mice. Crit Care Med 39:2487–2494PubMedCrossRefGoogle Scholar
  86. 86.
    Chander V, Chopra K (2006) Protective effect of resveratrol, a polyphenolic phytoalexin on glycerol-induced acute renal failure in rat kidney. Ren Fail 28:161–169PubMedCrossRefGoogle Scholar
  87. 87.
    Rieger E, Rech VC, Feksa LR, Wannmacher CM (2008) intraperitoneal glycerol induces oxidative stress in rat kidney. Clin Exp Pharmacol Physiol 35:928–933PubMedCrossRefGoogle Scholar
  88. 88.
    Singh D, Chander V, Chopra K (2004) Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology 201:143–151PubMedCrossRefGoogle Scholar
  89. 89.
    Kim JH, Lee SS, Jung MH, Yeo HD, Kim HJ, Yang JI et al (2010) N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant 25:1435–1443PubMedCrossRefGoogle Scholar
  90. 90.
    Polo-Romero FJ, Fernández-Fúnez A, BrosetaViana L, Atienza MP, Sánchez Gascón F (2004) Effect of N-acetylcysteine on antioxidant status in glycerol-induced acute renal failure in rats. Ren Fail 26:613–618PubMedCrossRefGoogle Scholar
  91. 91.
    Liu CF, Lin MH, Lin CC, Chang HW, Lin SC (2002) Protective effect of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice. J Biomed Sci 9:299–302PubMedCrossRefGoogle Scholar
  92. 92.
    Das SK, Varadhan S, Dhanya L, Mukherjee S, Vasudevan DM (2008) Effects of chronic ethanol exposure on renal function tests and oxidative stress in kidney. Indian J Clin Biochem 23:341–344PubMedCrossRefGoogle Scholar
  93. 93.
    Saravanan N, Nalini N (2007) Impact of Hemidesmus indicus R.Br. extract on ethanol-mediated oxidative damage in rat kidney. Redox Rep 12:229–235PubMedCrossRefGoogle Scholar
  94. 94.
    Yuan Q, Hong S, Han S, Zeng L, Liu F, Ding G et al (2011) Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress. PLoS One 6:e25811PubMedCrossRefGoogle Scholar
  95. 95.
    Aydin S, Ozaras R, Uzun H, Belce A, Uslu E, Tahan V et al (2002) N-acetylcysteine reduced the effect of ethanol on antioxidant system in rat plasma and brain tissue. Tohoku J Exp Med 198:71–77PubMedCrossRefGoogle Scholar
  96. 96.
    Skrzydlewska E, Farbiszewski R (1999) Protective effect of N-acetylcysteine on reduced glutathione, reduced glutathione-related enzymes and lipid peroxidation in methanol intoxication. Drug Alcohol Depend 57:61–67PubMedCrossRefGoogle Scholar
  97. 97.
    Verhelst D, Moulin P, Haufroid V, Wittebole X, Jadoul M, Hantson P (2004) Acute renal injury following methanol poisoning: analysis of a case series. Int J Toxicol 23:267–273PubMedCrossRefGoogle Scholar
  98. 98.
    Obal D, Rascher K, Favoccia C, Dettwiler S, Schlack W (2006) Post-conditioning by a short administration of desflurane reduced renal reperfusion injury after differing of ischaemia times in rats. Br J Anaesth 97:783–791PubMedCrossRefGoogle Scholar
  99. 99.
    Halpren BA, Kempson RL, Coplon NS (1973) Interstitial fibrosis and chronic renal failure following methoxyflurane anesthesia. JAMA 223:1239–1242PubMedCrossRefGoogle Scholar
  100. 100.
    Lee HT, Kim M, Kim M, Kim N, Billings FT (2007) Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am J Physiol Renal Physiol 293:F713–F722PubMedCrossRefGoogle Scholar
  101. 101.
    Lee HT, Emala CW, Joo JD, Kim M (2007) Isoflurane improves survival and protects against renal and hepatic injury in murine septic peritonitis. Shock 23:373–379CrossRefGoogle Scholar
  102. 102.
    Zhang L, Huang H, Cheng J, Liu J, Zhao H, Vizcaychipi MP et al (2011) Pre-treatment with isoflurane ameliorates renal ischemic-reperfusion injury in mice. Life Sci 88:1102–1107PubMedCrossRefGoogle Scholar
  103. 103.
    Kim M, Kim M, Kim N, D’Agati VD, Emala CW Sr, Lee HT (2007) Isoflurane mediates protection from renal ischemia–reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways. Am J Physiol Renal Physiol 293:F1827–F1835PubMedCrossRefGoogle Scholar
  104. 104.
    Obal D, Dettwiler S, Favoccia C, Rascher K, Preckel B, Schlack W (2006) Effect of sevoflurane preconditioning on ischaemia/reperfusion injury in the rat kidney in vivo. Eur J Anaesthesiol 23:319–326PubMedCrossRefGoogle Scholar
  105. 105.
    Goldberg ME, Cantillo J, Gratz I, Deal E, Vekeman D, McDougall R et al (1999) Dose of compound A, not sevoflurane, determines changes in the biochemical markers of renal injury in healthy volunteers. Anesth Analg 88:438–445Google Scholar
  106. 106.
    Mansano AM, Vianna PT, Fabris VE, Silva LM, Braz LG, Castiglia YM et al (2012) Prevention of renal ischemia/reperfusion injury in rats using acetylcysteine after anesthesia with isoflurane. Acta Cir Bras 27:340–345PubMedCrossRefGoogle Scholar
  107. 107.
    Waring WS, Moonie A (2011) Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol 49:720–728CrossRefGoogle Scholar
  108. 108.
    Devarajan P (2011) Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr 23:194–200PubMedCrossRefGoogle Scholar
  109. 109.
    Schiffl H, Lang SM (2012) Update on biomarkers of acute kidney injury: moving closer to clinical impact? Mol Diagn Ther 16:199–207PubMedCrossRefGoogle Scholar
  110. 110.
    Barrera-Chimal J, Bobadilla NA (2012) Are recently reported biomarkers helpful for early and accurate diagnosis of acute kidney injury? Biomarkers 17:385–393PubMedCrossRefGoogle Scholar
  111. 111.
    Mårtensson J, Martling CR, Bell M (2012) Novel biomarkers of acute kidney injury and failure: clinical applicability. Br J Anaesth 109:843–850PubMedCrossRefGoogle Scholar
  112. 112.
    Soni SS, Pophale R, Ronco C (2011) New biomarkers for acute renal injury. Clin Chem Lab Med 49:1257–1263PubMedCrossRefGoogle Scholar
  113. 113.
    Kimmel M, Butscheid M, Brenner S, Kuhlmann U, Klotz U, Alscher DM (2008) Improved estimation of glomerular filtration rate by serum cystatin C in preventing contrast induced nephropathy by N-acetylcysteine or zinc—preliminary results. Nephrol Dial Transplant 23:1241–1245PubMedCrossRefGoogle Scholar
  114. 114.
    Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—A meta-analysis. Clin Biochem 40:383–391PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang Z, Lu B, Sheng X, Jin N (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58:356–365PubMedCrossRefGoogle Scholar
  116. 116.
    Bagshaw SM, Bellomo R (2010) Cystatin C in acute kidney injury. Curr Opin Crit Care 16:533–539PubMedCrossRefGoogle Scholar
  117. 117.
    Zahran A, El-Husseini A, Shoker A (2007) Can cystatin C replace creatinine to estimate glomerular filtration rate? A literature review. Am J Nephrol 27:197–205PubMedCrossRefGoogle Scholar
  118. 118.
    Ahola T, Fellman V, Laaksonen R, Laitila J, Lapatto R, Neuvonen PJ et al (1999) Pharmacokinetics of intravenous N-acetylcysteine in pre-term new-born infants. Eur J Clin Pharmacol 45:645–650CrossRefGoogle Scholar
  119. 119.
    Olsson B, Johansson M, Gabrielsson J, Bolme P et al (1988) Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur J Clin Pharmacol 34:77–82PubMedCrossRefGoogle Scholar
  120. 120.
    Brown M, Bjorksten A, Medved I (2004) Pharmacokinetics of intravenous N-acetylcysteine in men at rest and during exercise. Eur J Clin Pharmacol 60:717–723PubMedCrossRefGoogle Scholar
  121. 121.
    Anderson SM, Park ZH, Patel RV (2011) Intravenous N-acetylcysteine in the prevention of contrast media-induced nephropathy. Ann Pharmacother 45:101–107PubMedCrossRefGoogle Scholar
  122. 122.
    Marenzi G, Assanelli E, Marana I, Lauri G, Campodonico J, Grazi M et al (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 354:2773–2784PubMedCrossRefGoogle Scholar
  123. 123.
    Tepel M, Aspelin P, Lameire N (2006) Contrast-induced nephropathy a clinical and evidence-based approach. Circulation 113:1799–1806PubMedCrossRefGoogle Scholar
  124. 124.
    Sandilands EA, Cameron S, Paterson F, Donaldson S, Briody L, Crowe J et al (2012) Graphic contrast material: study protocol. BMC Clin Pharmacol 12:3Google Scholar
  125. 125.
    Szakmany T, Hauser B, Radermacher P (2012) N-acetylcysteine for sepsis and systemic inflammatory response in adults (review). Cochrane Database Syst Rev 9:CD006616Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hesamoddin Hosseinjani
    • 1
  • Azadeh Moghaddas
    • 1
  • Hossein Khalili
    • 1
  1. 1.Department of Clinical Pharmacy, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations