European Journal of Clinical Pharmacology

, Volume 69, Issue 3, pp 395–405 | Cite as

Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population

  • T. Rusdiana
  • T. Araki
  • T. Nakamura
  • A. Subarnas
  • K. Yamamoto



The aim of this study was to assess the pharmacokinetics and pharmacodynamics of warfarin associated with genetic polymorphisms in VKORC1, CYP2C9, CYP2C19, and CYP4F2 in Indonesian patients treated with low-dose warfarin.


Genotyping of VKORC1, CYP2C9, CYP2C19, and CYP4F2 was carried out in 103 patients treated with a daily dose of 1–2 mg warfarin, 89 of whom were treated with a fixed daily dose of warfarin (1 mg). The plasma concentrations of S- and R-warfarin and S- and R-7-hydroxywarfarin were used as pharmacokinetic indices, while prothrombin time expressed as the international normalized ratio (PT-INR) was used as a pharmacodynamic index.


In patients treated with a fixed daily dose of warfarin (1 mg), a higher PT-INR was associated with VKORC1-1639 AA [median 1.35; interquartile range (IQR) 1.21–1.50] than with the GA (1.18; IQR 1.12–1.32; p < 0.01) and GG (1.02; IQR = 1.02–1.06; p < 0.01) polymorphisms, and with CYP2C9*1/*3 (1.63; IQR 1.45–1.85) compared to *1/*1 (1.23; IQR  1.13–1.43; p < 0.05). The S-warfarin concentration was significantly higher in patients with CYP2C9*1/*3 than in those with *1/*1 (p < 0.05). With low-dose warfarin administration, there was no significant difference in the concentrations of warfarin metabolites among any of the genotype variants. The genotype variations of CYP2C19 and CYP4F2 were not significantly associated with the PT-INR.


For low-dose warfarin treatment, the VKORC1-1639 G > A and CYP2C9 genotype variations affected the pharmacokinetics and pharmacodynamics of warfarin, while we could not find significant effects of CYP4F2 or CYP2C19 genotype variations on warfarin (metabolite) concentrations or PT-INR.


Warfarin Pharmacogenetics VKORC1 CYP2C9 CYP4F2 



The authors thank all physicians and nursing staffs of the cardiovascular services units in Al-Islam Hospital, Salamun Hospital, and Hasan Sadikin Hospital, Bandung, Indonesia, for their participation in this study. We thank Norisca Aliza Putriana and Sari Handayani for their assistance in collecting patient data and providing technical support. We also thank Aiko Matsumoto for her secretarial assistance.

Conflict of interests



  1. 1.
    Hirsh J, Dalen JE, Anderson DR, Poller L, Bussey H, Ansell J et al (2001) Oral anticoagulants: Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 119(1):8S–21SPubMedCrossRefGoogle Scholar
  2. 2.
    Kearon C, Ginsberg JS, Kovacs MJ, Anderson DR, Wells P, Julian JA et al (2003) Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. N Engl J Med 349(7):631–639PubMedCrossRefGoogle Scholar
  3. 3.
    Ridker PM, Goldhaber SZ, Danielson E, Rosenberg Y, Eby CS, Deitcher SR et al (2003) Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med 348(15):1425–1434PubMedCrossRefGoogle Scholar
  4. 4.
    Khan T, Wynne H, Wood P, Torrance A, Hankey C, Avery P et al (2004) Dietary vitamin K influences intra-individual variability in anticoagulant response to warfarin. Br J Haematol 124(3):348–354PubMedCrossRefGoogle Scholar
  5. 5.
    Kamali F, Khan TI, King BP, Frearson R, Kesteven P, Wood P et al (2004) Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 75(3):204–212PubMedCrossRefGoogle Scholar
  6. 6.
    Nathisuwan S, Dilokthornsakul P, Chaiyakunapruk N, Morarai T, Yodting T, Piriyachananusorn N (2011) Assessing evidence of interaction between smoking and warfarin: a systematic review and meta-analysis. Chest 139(5):1130–1139PubMedCrossRefGoogle Scholar
  7. 7.
    Wilke RA, Berg RL, Vidaillet HJ, Caldwell MD, Burmester JK, Hillman MA (2005) Impact of age, CYP2C9 genotype and concomitant medication on the rate of rise for prothrombin time during the first 30 days of warfarin therapy. Clin Med Res 3(4):207–213PubMedCrossRefGoogle Scholar
  8. 8.
    Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C et al (2005) Cytochrome P4502C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106(1):135–140PubMedCrossRefGoogle Scholar
  9. 9.
    D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V et al (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649PubMedCrossRefGoogle Scholar
  10. 10.
    Limdi NA, KArnett D, Goldstein JA, Beasley TM, McGwin G, Adler BK et al (2008) Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics 9(5):511–526PubMedCrossRefGoogle Scholar
  11. 11.
    McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE (2009) CYP4F2 is a vitamin K-1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 75(6):1337–1346PubMedCrossRefGoogle Scholar
  12. 12.
    Obayashi K, Nakamura K, Kawana J, Ogata H, Hanada K, Kurabayashi M et al (2006) VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 80(2):169–178PubMedCrossRefGoogle Scholar
  13. 13.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333PubMedCrossRefGoogle Scholar
  14. 14.
    Uno T, Sugimoto K, Sugawara K, Tateishi T (2008) The effect of CYP2C19 genotypes on the pharmacokinetics of warfarin enantiomers. J Clin Pharm Ther 33(1):67–73PubMedCrossRefGoogle Scholar
  15. 15.
    Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113(4):784–792PubMedCrossRefGoogle Scholar
  16. 16.
    Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J, Wadelius C et al (2007) Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 121(1):23–34PubMedCrossRefGoogle Scholar
  17. 17.
    Suriapranata IM, Tjong WY, Wang T, Utama A, Raharjo SB, Yuniadi Y et al (2011) Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians. BMC Med Genet 12:80PubMedCrossRefGoogle Scholar
  18. 18.
    Herlitz J, Holm J, Peterson M, Karlson BW, Evander MH, Erhardt L (2004) Effect of fixed low-dose warfarin added to aspirin in the long term after acute myocardial infarction the LoWASA Study. Eur Hear J 25(3):232–239CrossRefGoogle Scholar
  19. 19.
    Gao L, He L, Luo J, Xu B, Yang J, Zhang YX et al (2011) Extremely low warfarin dose in patients with genotypes of CYP2C9*3/*3 and VKORC1-1639A/A. Chin Med J (Engl) 124(17):2767–2770Google Scholar
  20. 20.
    Jensen BP, Chin PK, Begg EJ (2011) Quantification of total and free concentrations of R- and S-warfarin in human plasma by ultrafiltration and LC-MS/MS. Anal Bioanal Chem 401(7):2187–2193PubMedCrossRefGoogle Scholar
  21. 21.
    Aomori T, Yamamoto K, Oguchi-Katayama A, Kawai Y, Ishidao T, Mitani Y et al (2009) Rapid single-nucleotide polymorphism detection of cytochrome P450 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genes for the warfarin dose adjustment by the SMart-amplification process version 2. Clin Chem 55(4):804–812PubMedCrossRefGoogle Scholar
  22. 22.
    Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Sugimura H et al (2001) Effect of genotypic differences in CYP2C19 on cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther 69(3):158–168PubMedCrossRefGoogle Scholar
  23. 23.
    Ward NC, Tsai IJ, Barden A, van Bockxmeer FM, Puddey IB, Hodgson JM et al (2008) A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure. Hypertension 51(5):1393–1398PubMedCrossRefGoogle Scholar
  24. 24.
    Yuan HY, Chen JJ, Lee MTM, Wung JC, Chen YF, Charng MJ et al (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14(13):1745–1751PubMedCrossRefGoogle Scholar
  25. 25.
    Wang DX, Chen HZ, Momary KM, Cavallari LH, Johnson JA, Sadee W (2008) Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112(4):1013–1021PubMedCrossRefGoogle Scholar
  26. 26.
    Kaminsky LS, Zhang ZY (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73(1):67–74PubMedCrossRefGoogle Scholar
  27. 27.
    Takahashi H, Ieiri I, Wilkinson GR, Mayo G, Kashima T, Kimura S et al (2004) 5′-Flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in white and Japanese patients. Blood 103(8):3055–3057PubMedCrossRefGoogle Scholar
  28. 28.
    Goto T, Miura M, Murata A, Terata K, Uno T, Yamamoto K et al (2010) Standard warfarin dose in a patient with the CYP2C9*3/*3 genotype leads to hematuria. Clin Chim Acta 411(17–18):1375–1377PubMedCrossRefGoogle Scholar
  29. 29.
    Kwon A, Jo SH, Im HJ, Jo YA, Park JY, Kang HJ, et al. (2011) Pharmacogenetic distribution of warfarin and its clinical significance in Korean patients during initial anticoagulation therapy. J Thromb Thrombolysis 32(4):467–473Google Scholar
  30. 30.
    Borgiani P, Ciccaci C, Forte V, Sirianni E, Novelli L, Barmanti P et al (2009) CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics 10(2):261–266PubMedCrossRefGoogle Scholar
  31. 31.
    Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P et al (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111(8):4106–4112PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang JE, Jorgensen AL, Alfirevic A, Williamson PR, Toh CH, Park BK et al (2009) Effects of CYP4F2 genetic polymorphisms and haplotypes on clinical outcomes in patients initiated on warfarin therapy. Pharmacogenet Genomics 19(10):781–789PubMedCrossRefGoogle Scholar
  33. 33.
    Pautas E, Moreau C, Gouin-Thibault I, Golmard JL, Mahe I, Legendre C et al (2010) Genetic factors (Vkorc1, Cyp2C9, Ephx1, and Cyp4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 87(1):57–64PubMedCrossRefGoogle Scholar
  34. 34.
    Cen HJ, Zeng WT, Leng XY, Huang M, Chen X, Li JL et al (2010) CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol 70(2):234–240PubMedCrossRefGoogle Scholar
  35. 35.
    Singh O, Sandanaraj E, Subramanian K, Lee LH, Chowbay B (2011) The influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in Asian patients. Drug Metab Pharmacokinet 26(2):130–136Google Scholar
  36. 36.
    Nakamura K, Obayashi K, Araki T, Aomori T, Fujita Y, Okada Y, et al. (2012) CYP4F2 gene polymorphism as a contributor to warfarin maintenance dose in Japanese subjects. J Clin Pharm Ther 37(4):481–485Google Scholar
  37. 37.
    Baciewicz AM, Morgan PJ (1990) Ranitidine–warfarin interaction. Ann Intern Med 112(1):76–77PubMedGoogle Scholar
  38. 38.
    Laizure SC, Madlock L, Cyr M, Self T (1997) Decreased hypoprothrombinemic effect of warfarin associated with furosemide. Ther Drug Monit 19(3):361–363PubMedCrossRefGoogle Scholar
  39. 39.
    Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC, et al. (2011) Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations. Ann Hematol 90(6):635–641Google Scholar
  40. 40.
    Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72(6):702–710PubMedCrossRefGoogle Scholar
  41. 41.
    Yang YS, Wong LP, Lee TC, Mustafa AM, Mohamed Z, Lang CC (2004) Genetic polymorphism of cytochrome P4502C19 in healthy Malaysian subjects. Br J Clin Pharmacol 58(3):332–335PubMedCrossRefGoogle Scholar
  42. 42.
    Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N et al (2010) Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet 19(23):4735–4744PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • T. Rusdiana
    • 1
    • 2
  • T. Araki
    • 1
    • 3
  • T. Nakamura
    • 1
    • 3
  • A. Subarnas
    • 2
  • K. Yamamoto
    • 1
    • 3
  1. 1.Department of Clinical PharmacologyGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Faculty of PharmacyPadjadjaran UniversitySumedangIndonesia
  3. 3.Department of PharmacyGunma University HospitalMaebashiJapan

Personalised recommendations