European Journal of Clinical Pharmacology

, Volume 69, Issue 3, pp 385–393 | Cite as

ABCB1 polymorphisms are associated with cyclosporine-induced nephrotoxicity and gingival hyperplasia in renal transplant recipients

  • Montserrat García
  • Rosa María Macías
  • Juan José Cubero
  • Julio Benítez
  • Francisco Caravaca
  • Guillermo GervasiniEmail author



There is a great deal of controversy regarding the clinical impact of genetic variants in patients receiving cyclosporine (CsA) as immunosuppressant therapy. We have investigated the effect of polymorphisms in the CYP3A and ABCB1 genes on CsA pharmacokinetics, acute rejection incidence and drug-related side effects in renal transplant recipients


The presence of CYP3A5*3, CYP3A4*1B and ABCB1 C1236T, G2677T/A and C3435T polymorphisms was assessed in 68 patients and retrospectively associated with pharmacokinetic and clinical parameters at 1 week and 1, 5 and 12 months after transplantation.


Only minor associations were found between the tested polymorphisms and CsA pharmacokinetics. Most notably, CYP3A5 expressers showed lower blood trough levels than non-expressers in the first week after grafting (32.5 ± 14.7 vs. 55.1 ± 3.8 ng/ml per mg/day per kilogram). In terms of CsA-induced adverse effects, the incidence of nephrotoxicity was higher in carriers of the ABCB1 3435TT genotype and in those patients carrying four to six variants in the three ABCB1 loci [odds ratio (OR) 4.2, 95 % confidence interval (CI) 1.3–13.9, p = 0.02 and OR 3.6, 95 % CI 1.1–11.8, p = 0.05, respectively]. These subjects with four to six ABCB1 variants were also at higher risk for gingival hyperplasia (OR 3.29, 95 % CI 1.1–10.3, p = 0.04). Renal function and the incidence of neurotoxicity and of acute rejection did not vary across the different genotypes.


ABCB1 polymorphisms may be helpful in predicting certain CsA-related side effects in renal transplant recipients. Our results also suggest that the mechanisms underlying these genetic associations are most likely independent of the drug’s trough blood concentrations.


ABCB1 CYP3A Polymorphisms Renal transplant Cyclosporine 



This work has been supported in part by grant GR10022 from Junta de Extremadura, Consejería de Economía, Comercio e Innovación, Mérida, Spain and grant PRIS11003 from FUNDESALUD, Mérida, Spain.

Conflict of interest statement



  1. 1.
    Ptachcinski RJ, Venkataramanan R, Burckart GJ (1986) Clinical pharmacokinetics of cyclosporin. Clin Pharmacokinet 11(2):107–132PubMedCrossRefGoogle Scholar
  2. 2.
    Kronbach T, Fischer V, Meyer UA (1988) Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 43(6):630–635PubMedCrossRefGoogle Scholar
  3. 3.
    Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391PubMedCrossRefGoogle Scholar
  4. 4.
    Anglicheau D, Thervet E, Etienne I, Hurault De Ligny B, Le Meur Y, Touchard G, Buchler M, Laurent-Puig P, Tregouet D, Beaune P, Daly A, Legendre C, Marquet P (2004) CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin Pharmacol Ther 75(5):422–433PubMedCrossRefGoogle Scholar
  5. 5.
    Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC, Malaise J, Lison D, Squifflet JP, Wallemacq P (2004) The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 14(3):147–154PubMedCrossRefGoogle Scholar
  6. 6.
    Crettol S, Venetz JP, Fontana M, Aubert JD, Pascual M, Eap CB (2008) CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther Drug Monit 30(6):689–699PubMedCrossRefGoogle Scholar
  7. 7.
    von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW (2001) No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 47(6):1048–1052Google Scholar
  8. 8.
    Bouamar R, Hesselink DA, van Schaik RH, Weimar W, Macphee IA, de Fijter JW, van Gelder T (2011) Polymorphisms in CYP3A5, CYP3A4, and ABCB1 are not associated with cyclosporine pharmacokinetics nor with cyclosporine clinical end points after renal transplantation. Ther Drug Monit 33(2):178–184PubMedGoogle Scholar
  9. 9.
    Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268(9):6077–6080PubMedGoogle Scholar
  10. 10.
    Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet 49(3):141–175PubMedCrossRefGoogle Scholar
  11. 11.
    Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II. Clin Pharmacokinet 49(4):207–221PubMedCrossRefGoogle Scholar
  12. 12.
    Cavalli SA, Hirata MH, Hirata RD (2001) Detection of MboII polymorphism at the 5′ promoter region of CYP3A4. Clin Chem 47(2):348–351PubMedGoogle Scholar
  13. 13.
    van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48(10):1668–1671PubMedGoogle Scholar
  14. 14.
    Anglicheau D, Verstuyft C, Laurent-Puig P, Becquemont L, Schlageter MH, Cassinat B, Beaune P, Legendre C, Thervet E (2003) Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 14(7):1889–1896PubMedCrossRefGoogle Scholar
  15. 15.
    Gervasini G, Garcia M, Macias RM, Cubero JJ, Caravaca F, Benitez J (2012) Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl Int 25(4):471–480PubMedCrossRefGoogle Scholar
  16. 16.
    Roy JN, Barama A, Poirier C, Vinet B, Roger M (2006) CYP3A4, CYP3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics 16(9):659–665PubMedCrossRefGoogle Scholar
  17. 17.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929PubMedCrossRefGoogle Scholar
  18. 18.
    Hesselink DA, van Gelder T, van Schaik RH, Balk AH, van der Heiden IP, van Dam T, van der Werf M, Weimar W, Mathot RA (2004) Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin Pharmacol Ther 76(6):545–556PubMedCrossRefGoogle Scholar
  19. 19.
    Tang HL, Ma LL, Xie HG, Zhang T, Hu YF (2010) Effects of the CYP3A5*3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients: a meta-analysis. Pharmacogenet Genomics 20(9):525–531PubMedCrossRefGoogle Scholar
  20. 20.
    Azarpira N, Aghdaie MH, Behzad-Behbahanie A, Geramizadeh B, Behzadi S, Malekhoseinie SA, Raisjalal GH, Rahsaz M, Pourgholami A, Sagheb F (2006) Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp Clin Transplant 4(1):416–419PubMedGoogle Scholar
  21. 21.
    Yates CR, Zhang W, Song P, Li S, Gaber AO, Kotb M, Honaker MR, Alloway RR, Meibohm B (2003) The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J Clin Pharmacol 43(6):555–564PubMedGoogle Scholar
  22. 22.
    Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, Weimar W, van Gelder T (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 74(3):245–254PubMedCrossRefGoogle Scholar
  23. 23.
    Op den Buijsch RA, Christiaans MH, Stolk LM, de Vries JE, Cheung CY, Undre NA, van Hooff JP, van Dieijen-Visser MP, Bekers O (2007) Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundam Clin Pharmacol 21(4):427–435PubMedCrossRefGoogle Scholar
  24. 24.
    Foote CJ, Greer W, Kiberd BA, Fraser A, Lawen J, Nashan B, Belitsky P (2006) MDR1 C3435T polymorphisms correlate with cyclosporine levels in de novo renal recipients. Transplant Proc 38(9):2847–2849PubMedCrossRefGoogle Scholar
  25. 25.
    Lum BL, Kaubisch S, Fisher GA, Brown BW, Sikic BI (2000) Effect of high-dose cyclosporine on etoposide pharmacodynamics in a trial to reverse P-glycoprotein (MDR1 gene) mediated drug resistance. Cancer Chemother Pharmacol 45(4):305–311PubMedCrossRefGoogle Scholar
  26. 26.
    List AF, Kopecky KJ, Willman CL, Head DR, Persons DL, Slovak ML, Dorr R, Karanes C, Hynes HE, Doroshow JH, Shurafa M, Appelbaum FR (2001) Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 98(12):3212–3220PubMedCrossRefGoogle Scholar
  27. 27.
    Jacobson PA, Schladt D, Israni A, Oetting WS, Lin YC, Leduc R, Guan W, Lamba V, Matas AJ (2012) Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. Transplantation 93(6):624–631PubMedGoogle Scholar
  28. 28.
    Klimecki WT, Futscher BW, Grogan TM, Dalton WS (1994) P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 83(9):2451–2458PubMedGoogle Scholar
  29. 29.
    Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J, Ackermann H, Seidl C, Hocher B, Zanger UM, Geiger H, Eichelbaum M, Schwab M (2005) ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol 16(5):1501–1511PubMedCrossRefGoogle Scholar
  30. 30.
    De Iudicibus S, Castronovo G, Gigante A, Stocco G, Decorti G, Di Lenarda R, Bartoli F (2008) Role of MDR1 gene polymorphisms in gingival overgrowth induced by cyclosporine in transplant patients. J Periodontal Res 43(6):665–672PubMedCrossRefGoogle Scholar
  31. 31.
    Drozdzik M, Mysliwiec K, Lewinska-Chelstowska M, Banach J, Drozdzik A, Grabarek J (2004) P-glycoprotein drug transporter MDR1 gene polymorphism in renal transplant patients with and without gingival overgrowth. J Clin Periodontol 31(9):758–763PubMedCrossRefGoogle Scholar
  32. 32.
    Grenda R, Prokurat S, Ciechanowicz A, Piatosa B, Kalicinski P (2009) Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients—a retrospective study. Ann Transplant 14(3):18–24PubMedGoogle Scholar
  33. 33.
    Montebugnoli L, Servidio D, Bernardi F (2000) The role of time in reducing gingival overgrowth in heart-transplanted patients following cyclosporin therapy. J Clin Periodontol 27(8):611–614PubMedCrossRefGoogle Scholar
  34. 34.
    Hassell TM, Hefti AF (1991) Drug-induced gingival overgrowth: old problem, new problem. Crit Rev Oral Biol Med 2(1):103–137PubMedGoogle Scholar
  35. 35.
    Lowry LY, Welbury RR, Seymour RA, Waterhouse PJ, Hamilton JR (1995) Gingival overgrowth in paediatric cardiac transplant patients: a study of 19 patients aged between 2 and 16 years. Int J Paediatr Dent 5(4):217–222PubMedCrossRefGoogle Scholar
  36. 36.
    Meisel P, Giebel J, Kunert-Keil C, Dazert P, Kroemer HK, Kocher T (2006) MDR1 gene polymorphisms and risk of gingival hyperplasia induced by calcium antagonists. Clin Pharmacol Ther 79(1):62–71PubMedCrossRefGoogle Scholar
  37. 37.
    Annese V, Valvano MR, Palmieri O, Latiano A, Bossa F, Andriulli A (2006) Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis. World J Gastroenterol 12(23):3636–3644PubMedGoogle Scholar
  38. 38.
    Grinyo J, Vanrenterghem Y, Nashan B, Vincenti F, Ekberg H, Lindpaintner K, Rashford M, Nasmyth-Miller C, Voulgari A, Spleiss O, Truman M, Essioux L (2008) Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int 21(9):879–891PubMedCrossRefGoogle Scholar
  39. 39.
    Eng HS, Mohamed Z, Calne R, Lang CC, Mohd MA, Seet WT, Tan SY (2006) The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int 69(10):1858–1864PubMedCrossRefGoogle Scholar
  40. 40.
    Bandur S, Petrasek J, Hribova P, Novotna E, Brabcova I, Viklicky O (2008) Haplotypic structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients. Transplantation 86(9):1206–1213PubMedCrossRefGoogle Scholar
  41. 41.
    Elens L, Bouamar R , Hesselink DA, Haufroid V, van Gelder T, van Schaik RH (2012) The new CYP3A4 intron 6C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet Genomics 22(5):373–380PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Montserrat García
    • 1
  • Rosa María Macías
    • 2
  • Juan José Cubero
    • 2
  • Julio Benítez
    • 1
  • Francisco Caravaca
    • 2
  • Guillermo Gervasini
    • 1
    Email author
  1. 1.Department of Surgical and Medical Therapeutics, Division of Pharmacology, Medical SchoolUniversity of ExtremaduraBadajozSpain
  2. 2.Service of NephrologyInfanta Cristina HospitalBadajozSpain

Personalised recommendations