European Journal of Clinical Pharmacology

, Volume 68, Issue 5, pp 479–503 | Cite as

Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases

  • P. Zarogoulidis
  • N. Papanas
  • I. Kioumis
  • E. Chatzaki
  • E. Maltezos
  • K. Zarogoulidis
Review Article

Abstract

Background

Macrolides have long been recognised to exert immunomodulary and anti-inflammatory actions. They are able to suppress the “cytokine storm” of inflammation and to confer an additional clinical benefit through their immunomodulatory properties.

Methods

A search of electronic journal articles was performed using combinations of the following keywords: macrolides, COPD, asthma, bronchitis, bronchiolitis obliterans, cystic fibrosis, immunomodulation, anti-inflammatory effect, diabetes, side effects and systemic diseases.

Results

Macrolide effects are time- and dose-dependent, and the mechanisms underlying these effects remain incompletely understood. Both in vitro and in vivo studies have provided ample evidence of their immunomodulary and anti-inflammatory actions. Importantly, this class of antibiotics is efficacious with respect to controlling exacerbations of underlying respiratory problems, such as cystic fibrosis, asthma, bronchiectasis, panbrochiolitis and cryptogenic organising pneumonia. Macrolides have also been reported to reduce airway hyper-responsiveness and improve pulmonary function.

Conclusion

This review provides an overview on the properties of macrolides (erythromycin, clarithromycin, roxithromycin, azithromycin), their efficacy in various respiratory diseases and their adverse effects.

Keywords

Antibiotics Inflammation Immunomodulation Macrolides 

References

  1. 1.
    Ōmura S (2002) Macrolide antibiotics: chemistry, biology, and practice, 2nd ed. Academic Press, BostonGoogle Scholar
  2. 2.
    Yip MJ, Porter JL, Fyfe JA, Lavender CJ, Portaels F, Rhodes M, Kator H, Colorni A, Jenkin GA, Stinear T (2007) Evolution of Mycobacterium ulcerans and other mycolactone-producing mycobacteria from a common Mycobacterium marinum progenitor. J Bacteriol 189:2021–2029. doi:10.1128/JB.01442-06 PubMedGoogle Scholar
  3. 3.
    Käser M, Hauser J, Small P, Pluschke G (2009) Large sequence polymorphisms unveil the phylogenetic relationship of environmental and pathogenic mycobacteria related to Mycobacterium ulcerans. Appl Environ Microbiol 75:5667–5675. doi:10.1128/AEM.00446-09 PubMedGoogle Scholar
  4. 4.
    Ungureanu V (2010) Macrolides, lincosamides, streptogramines (MLS): mechanisms of action and resistance. Bacteriol Virusol Parazitol Epidemiol 55:131–138PubMedGoogle Scholar
  5. 5.
    Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330:1005–1014. doi:10.1016/S0022-2836(03)00662-4 PubMedGoogle Scholar
  6. 6.
    Buret AG (2010) Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin. Can J Vet Res 74:1–10PubMedGoogle Scholar
  7. 7.
    Rubin BK, Henke MO (2004) Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 125(2 Suppl):70S–78S. doi:10.1378/chest.125.2_suppl.70S PubMedGoogle Scholar
  8. 8.
    Feola DJ, Garvy BA, Cory TJ, Birket SE, Hoy H, Hayes D Jr, Murphy BS (2010) Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. Antimicrob Agents Chemother 54:2437–2447. doi:10.1128/AAC.01424-09 PubMedGoogle Scholar
  9. 9.
    Ribeiro CM, Hurd H, Wu Y, Martino ME, Jones L, Brighton B, Boucher RC, O’Neal WK (2009) Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia. PLoS One 4(6):e5806. doi:10.1371/journal.pone.0005806 PubMedGoogle Scholar
  10. 10.
    Shinkai M, López-Boado YS, Rubin BK (2007) Clarithromycin has an immunomodulatory effect on ERK-mediated inflammation induced by Pseudomonas aeruginosa flagellin. J Antimicrob Chemother 59:1096–1101. doi:10.1093/jac/dkm084 PubMedGoogle Scholar
  11. 11.
    Kurata S, Taguchi H, Sasaki T, Fujioka Y, Kamiya S (2010) Antimicrobial and immunomodulatory effect of clarithromycin on macrolide-resistant Mycoplasma pneumoniae. J Med Microbiol 59:693–701. doi:10.1099/jmm.0.014191-0 PubMedGoogle Scholar
  12. 12.
    Nakamura H, Fujishima S, Inoue T, Ohkubo Y, Soejima K, Waki Y, Mori M, Urano T, Sakamaki F, Tasaka S, Ishizaka A, Kanazawa M, Yamaguchi K (1999) Clinical and immunoregulatory effects of roxithromycin therapy for chronic respiratory tract infection. Eur Respir J 13:1371–1379PubMedGoogle Scholar
  13. 13.
    Guillot L, Tabary O, Nathan N, Corvol H, Clement A (2011) Macrolides: new therapeutic perspectives in lung diseases. Int J Biochem Cell Biol 43(9):1241–1246. doi:10.1016/j.biocel.2011.05.009 Google Scholar
  14. 14.
    Sugawara A, Sueki A, Hirose T, Nagai K, Gouda H, Hirono S, Shima H, Akagawa KS, Omura S, Sunazuka T (2011) Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg Med Chem Lett 21:3373–3376. doi:10.1016/j.bmcl.2011.04.004 PubMedGoogle Scholar
  15. 15.
    Viasus D, Paño-Pardo JR, Cordero E, Campins A, López-Medrano F, Villoslada A, Fariñas MC, Moreno A, Rodríguez-Baño J, Oteo JA, Martínez-Montauti J, Torre-Cisneros J, Segura F, Carratalà J, Novel Influenza A (H1N1) Study Group, Spanish Network for Research in Infectious Diseases (2011) Effect of immune-modulatory therapies in patients with pandemic influenza A (H1N1) 2009 complicated by pneumonia. J Infect 62:193–199. doi:10.1016/j.jinf.2011.01.014 PubMedGoogle Scholar
  16. 16.
    Houssen ME, Haron MM, Metwally SS, Ibrahim TM (2011) Effects of immunomodulatory drugs on plasma inflammatory markers in a rabbit model of atherosclerosis. J Physiol Biochem 67:115–120. doi:10.1007/s13105-010-0055-1 PubMedGoogle Scholar
  17. 17.
    Kanoh S, Rubin BK (2010) Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 23:590–615. doi:10.1128/CMR.00078-09 PubMedGoogle Scholar
  18. 18.
    Leiva M, Ruiz-Bravo A, Moreno E, Jiménez-Valera M (2008) Telithromycin inhibits the production of proinflammatory mediators and the activation of NF-kappaB in in vitro-stimulated murine cells. FEMS Immunol Med Microbiol 53:343–350. doi:10.1111/j.1574-695X.2008.00424.x PubMedGoogle Scholar
  19. 19.
    Baziaka F, Giamarellos-Bourboulis EJ, Raftogiannis M, Adamis T, Tziortzioti V, Sabracos L, Chrisofos M, Koutoukas P, Giamarellou H, Douzinas EE (2008) Immunomodulatory effect of three-day continuous administration of clarithromycin for experimental sepsis due to multidrug-resistant Pseudomonas aeruginosa. J Chemother 20:63–68PubMedGoogle Scholar
  20. 20.
    Shinkai M, Henke MO, Rubin BK (2008) Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther 117:393–405. doi:10.1016/j.pharmthera.2007.11.001 PubMedGoogle Scholar
  21. 21.
    Tauber SC, Nau R (2008) Immunomodulatory properties of antibiotics. Curr Mol Pharmacol 1:68–79. doi:10.1080/08923970701692841 PubMedGoogle Scholar
  22. 22.
    Wu L, Zhang W, Tian L, Bao K, Li P, Lin J (2007) Immunomodulatory effects of erythromycin and its derivatives on human T-lymphocyte in vitro. Immunopharmacol Immunotoxicol 29:587–596. doi:10.1080/08923970701692841 PubMedGoogle Scholar
  23. 23.
    Blasi F, Cazzola M, Tarsia P, Aliberti S, Baldessari C, Valenti V (2006) Telithromycin in lower respiratory tract infections. Future Microbiol 1:7–16. doi:10.2217/17460913.1.1.7 PubMedGoogle Scholar
  24. 24.
    Niclau DP, Tessier R, Rubinstein I, Nightingale CH (2006) In vivo immunomodulatory profile of telithromycin in a murine pneumococcal infection model. Pharmazie 61:343–347PubMedGoogle Scholar
  25. 25.
    Kohyama T, Takizawa H, Kawasaki S, Akiyama N, Sato M, Ito K (1999) Fourteen-member macrolides inhibit interleukin-8 release by human eosinophils from atopic donors. Antimicrob Agents Chemother 43:907–911PubMedGoogle Scholar
  26. 26.
    Legssyer R, Huaux F, Lebacq J, Delos M, Marbaix E, Lebecque P, Lison D, Scholte BJ, Wallemacq P, Leal T (2006) Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir Res 7:134. doi:10.1186/1465-9921-7-134 PubMedGoogle Scholar
  27. 27.
    Abe S, Nakamura H, Inoue S, Takeda H, Saito H, Kato S, Mukaida N, Matsushima K, Tomoike H (2000) Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 22:51–60PubMedGoogle Scholar
  28. 28.
    Black PN (1997) Anti-inflammatory effects of macrolide antibiotics. Eur Respir J 10:971–972. doi:10.1183/09031936.97.10050971 PubMedGoogle Scholar
  29. 29.
    Swords WE, Rubin BK (2003) Macrolide antibiotics, bacterial populations and inflammatory airway disease. Neth J Med 61:242–248PubMedGoogle Scholar
  30. 30.
    Blau H, Klein K, Shalit I, Halperin D, Fabian I (2007) Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, JNK, and NF-kappaB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 292:L343–L352. doi:10.1152/ajplung.00030.2006 PubMedGoogle Scholar
  31. 31.
    Wales D, Woodhead M (1999) The anti-inflammatory effects of macrolides. Thorax 54(Suppl 2):S58–S62. doi:10.1136/thx.54.2008.S58 PubMedGoogle Scholar
  32. 32.
    Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, Nakajima J, Yanagisawa M, Ito K (1998) Erythromycin and clarithromycin attenuate cytokine-induced endothelin-1 expression in human bronchial epithelial cells. Eur Respir J 12:57–63. doi:10.1183/09031936.98.12010057 PubMedGoogle Scholar
  33. 33.
    Sevilla-Sánchez D, Soy-Muner D, Soler-Porcar N (2010) Usefulness of macrolides as anti-inflammatories in respiratory diseases. Arch Bronconeumol 46:244–254. doi:10.1016/j.arbres.2009.10.008 PubMedGoogle Scholar
  34. 34.
    Tamaoki J (2004) The effects of macrolides on inflammatory cells. Chest 125(2 Suppl):41S–50S; quiz 51S. doi: 10.1378/chest.125.2_suppl.41S
  35. 35.
    Leiva M, Ruiz-Bravo A, Jimenez-Valera M (2008) Effects of telithromycin in in vitro and in vivo models of lipopolysaccharide-induced airway inflammation. Chest 134:20–29. doi:10.1378/chest.07-3056 PubMedGoogle Scholar
  36. 36.
    Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011) Immunomodulatory effects of macrolide antibiotics—part 1: biological mechanisms. Respiration 81:67–74. doi:10.1159/000320319 PubMedGoogle Scholar
  37. 37.
    Kumar V, Harjai K, Chhibber S (2008) Effect of clarithromycin on lung inflammation and alveolar macrophage function in Klebsiella pneumoniae B5055-induced acute lung infection in BALB/c mice. J Chemother 20:609–614PubMedGoogle Scholar
  38. 38.
    Ivetić Tkalcević V, Bosnjak B, Hrvacić B, Bosnar M, Marjanović N, Ferencić Z, Situm K, Culić O, Parnham MJ, Eraković V (2006) Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice. Eur J Pharmacol 539:131–138. doi:10.1016/j.ejphar.2006.03.074 PubMedGoogle Scholar
  39. 39.
    Davidson R, Péloquin L (2002) Anti-inflammatory effects of the macrolides. J Otolaryngol 31(Suppl 1):S38–40PubMedGoogle Scholar
  40. 40.
    Marjanović N, Bosnar M, Michielin F, Willé DR, Anić-Milić T, Culić O, Popović-Grle S, Bogdan M, Parnham MJ, Haber VE (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol Res 63:389–397. doi:10.1016/j.phrs.2011.02.001 PubMedGoogle Scholar
  41. 41.
    Marot A, Morelle J, Chouinard VA, Jadoul M, Lambert M, Demoulin N (2011) Concomitant use of simvastatin and amiodarone resulting in severe rhabdomyolysis: a case report and review of the literature. Acta Clin Belg 66:134–136PubMedGoogle Scholar
  42. 42.
    Giorgi MA, Caroli C, Arazi HC, Di Girolamo G (2011) Pharmacogenomics and adverse drug reactions: the case of statins. Expert Opin Pharmacother 12:1499–1509. doi:10.1517/14656566.2011.563734 PubMedGoogle Scholar
  43. 43.
    Gao X, Ray R, Xiao Y, Ishida K, Ray P (2010) Macrolide antibiotics improve chemotactic and phagocytic capacity as well as reduce inflammation in sulfur mustard-exposed monocytes. Pulm Pharmacol Ther 23:97–106. doi:10.1016/j.pupt.2009.10.010 PubMedGoogle Scholar
  44. 44.
    Hrvacić B, Bosnjak B, Bosnar M, Ferencić Z, Glojnarić I, Eraković Haber V (2009) Clarithromycin suppresses airway hyperresponsiveness and inflammation in mouse models of asthma. Eur J Pharmacol 616:236–243. doi:10.1016/j.ejphar.2009.06.032 PubMedGoogle Scholar
  45. 45.
    Beigelman A, Gunsten S, Mikols CL, Vidavsky I, Cannon CL, Brody SL, Walter MJ (2009) Azithromycin attenuates airway inflammation in a noninfectious mouse model of allergic asthma. Chest 136:498–506. doi:10.1378/chest.08-3056 PubMedGoogle Scholar
  46. 46.
    Pinto LA, Camozzato C, Avozani M, Machado DC, Jones MH, Stein RT, Pitrez PM (2004) Effect of clarithromycin on the cell profile of bronchoalveolar lavage fluid in mice with neutrophil-predominant lung disease. Rev Hosp Clin Fac Med Sao Paulo 59:99–103PubMedGoogle Scholar
  47. 47.
    Banerjee D, Honeybourne D, Khair OA (2004) The effect of oral clarithromycin on bronchial airway inflammation in moderate-to-severe stable COPD: a randomized controlled trial. Treat Respir Med 3(1):59–65PubMedGoogle Scholar
  48. 48.
    Beuther DA, Martin RJ (2004) Antibiotics in asthma. Curr Allergy Asthma Rep 4:132–138PubMedGoogle Scholar
  49. 49.
    Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360:978–984PubMedGoogle Scholar
  50. 50.
    Kunisaki KN, Niewoehner DE (2008) Antibiotic prophylaxis for chronic obstructive pulmonary disease. Resurrecting an old idea. Am J Respir Crit Care Med 178:1098–1099. doi:10.1164/rccm.200808-1315ED PubMedGoogle Scholar
  51. 51.
    Cardinale F, Chironna M, Dumke R, Binetti A, Daleno C, Sallustio A, Valzano A, Esposito S (2011) Macrolide-resistant Mycoplasma pneumoniae in paediatric pneumonia. Eur Respir J 37:1522–1524. doi:10.1183/09031936.00172510 PubMedGoogle Scholar
  52. 52.
    Phaff SJ, Tiddens HA, Verbrugh HA, Ott A (2006) Macrolide resistance of Staphylococcus aureus and Haemophilus species associated with long-term azithromycin use in cystic fibrosis. J Antimicrob Chemother 57:741–746. doi:10.1093/jac/dkl014 PubMedGoogle Scholar
  53. 53.
    Tramper-Stranders GA, Wolfs TF, Fleer A, Kimpen JL, van der Ent CK (2007) Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J 26:8–12. doi:10.1097/01.inf.0000247109.44249.ac PubMedGoogle Scholar
  54. 54.
    Inoue M, Farrell DJ, Kaneko K (2008) Antimicrobial susceptibility of respiratory tract pathogens in Japan during PROTEKT years 1–5 (1999–2004). Microb Drug Resist 14:109–117. doi:10.1089/mdr.2008.0806 PubMedGoogle Scholar
  55. 55.
    Jacobs E, Dalhoff A, Korfmann G (2009) Susceptibility patterns of bacterial isolates from hospitalised patients with respiratory tract infections (MOXIAKTIV Study). Int J Antimicrob Agents 33:52–57. doi:10.1016/j.ijantimicag.2008.07.017 PubMedGoogle Scholar
  56. 56.
    Karlowsky JA, Lagace-Wiens PR, Low DE (2009) Annual macrolide prescription rates and the emergence of macrolide resistance among Streptococcus pneumoniae in Canada from 1995 to 2005. Int J Antimicrob Agents 34:375–379. doi:10.1016/j.ijantimicag.2009.05.008 PubMedGoogle Scholar
  57. 57.
    Pihlajamaki M, Kaijalainen T, Huovinen P (2002) Rapid increase in macrolide resistance among penicillin non-susceptible pneumococci in Finland, 1996–2000. J Antimicrob Chemother 49:785–792. doi:10.1093/jac/dkf033 PubMedGoogle Scholar
  58. 58.
    Barkai G, Greenberg D, Givon-Lavi N, Dreifuss E, Vardy D, Dagan R (2005) Community prescribing and resistant Streptococcus pneumoniae. Emerg Infect Dis 11(6):829–837PubMedGoogle Scholar
  59. 59.
    Bergman M, Huikko S, Huovinen P, Paakkari P, Seppälä H, Finnish Study Group for Antimicrobial Resistance (FiRe Network) (2006) Macrolide and azithromycin use are linked to increased macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 50(11):3646–3650. doi:10.1128/AAC.00234-06 PubMedGoogle Scholar
  60. 60.
    García-Rey C, Aguilar L, Baquero F, Casal J, Dal-Ré R (2002) Importance of local variations in antibiotic consumption and geographical differences of erythromycin and penicillin resistance in Streptococcus pneumoniae. J Clin Microbiol 40(1):159–164. doi:10.1128/JCM.40.1.159-164.2002 PubMedGoogle Scholar
  61. 61.
    McGhan LJ, Merchant SN (2003) Erythromycin ototoxicity. Otol Neurotol 24(4):701–702PubMedGoogle Scholar
  62. 62.
    Boucher RC, Van Scott MR, Willumsen N, Stutts MJ (1988) 3. Epithelial injury. Mechanisms and cell biology of airway epithelial injury. Am Rev Respir Dis 138(6 Pt 2):S41–S4Google Scholar
  63. 63.
    Leme CV, Raposo LS, Ruiz MT, Biselli JM, Galbiatti AL, Maniglia JV, Pavarino-Bertelli EC, Goloni-Bertollo EM (2010) GSTM1 and GSTT1 genes analysis in head and neck cancer patients. Rev Assoc Med Bras 56:299–303PubMedGoogle Scholar
  64. 64.
    McGrath-Morrow SA, Stahl JL (2000) G(1) Phase growth arrest and induction of p21(Waf1/Cip1/Sdi1) in IB3-1 cells treated with 4-sodium phenylbutyrate. J Pharmacol Exp Ther 294:941–947PubMedGoogle Scholar
  65. 65.
    Jiang C, Finkbeiner WE, Widdicombe JH, Fang SL, Wang KX, Nietupski JB, Hehir KM, Cheng SH (1999) Restoration of cyclic adenosine monophosphate-stimulated chloride channel activity in human cystic fibrosis tracheobronchial submucosal gland cells by adenovirus-mediated and cationic lipid-mediated gene transfer. Am J Respir Cell Mol Biol 20:1107–1115PubMedGoogle Scholar
  66. 66.
    Bergamini G, Cigana C, Sorio C, Della Peruta M, Pompella A, Corti A, Huaux FA, Leal T, Assael BM, Melotti P (2009) Effects of azithromycin on glutathione S-transferases in cystic fibrosis airway cells. Am J Respir Cell Mol Biol 41:199–206. doi:10.1165/rcmb.2008-0013OC PubMedGoogle Scholar
  67. 67.
    Cigana C, Assael BM, Melotti P (2007) Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother 51:975–981. doi:10.1128/AAC.01142-06 PubMedGoogle Scholar
  68. 68.
    Ilowite J, Spiegler P, Kessler H (2009) Pharmacological treatment options for bronchiectasis: focus on antimicrobial and anti-inflammatory agents. Drugs 69:407–419. doi:10.2165/00003495-200969040-00002 PubMedGoogle Scholar
  69. 69.
    Owczarek W, Paluchowska E (2008) The macrolide antibiotics in treatment of skin diseases. Pol Merkur Lekarski 25:429–431PubMedGoogle Scholar
  70. 70.
    Southern KW, Barker PM (2004) Azithromycin for cystic fibrosis. Eur Respir J 24(5):834–838. doi:10.1183/09031936.04.00084304 PubMedGoogle Scholar
  71. 71.
    Bornhövd EC, Schuller E, Bieber T, Wollenberg A (2000) Immunosuppressive macrolides and their use in dermatology. Hautarzt 51:646–654PubMedGoogle Scholar
  72. 72.
    Karrow NA, McCay JA, Brown RD, Musgrove DL, Germolec DR, White KL Jr (2001) Evaluation of the immunomodulatory effects of the macrolide antibiotic, clarithromycin, in female B6C3F1 mice: a 28-day oral gavage study. Drug Chem Toxicol 24:19–37. doi:10.1081/DCT-100103083 PubMedGoogle Scholar
  73. 73.
    Langelot M, Cellerin L, Germaud P (2006) Anti-inflammatory effects of macrolides: applications in lung disease. Rev Pneumol Clin 62:215–222PubMedGoogle Scholar
  74. 74.
    Wu L, Lin JH, Bao K, Li PF, Zhang WG (2009) In vitro effects of erythromycin on RANKL and nuclear factor-kappa B by human TNF-alpha stimulated Jurkat cells. Int Immunopharmacol 9(9):1105–1109. doi:10.1016/j.intimp.2009.05.008 PubMedGoogle Scholar
  75. 75.
    Tone A, Shikata K, Sasaki M, Ohga S, Yozai K, Nishishita S, Usui H, Nagase R, Ogawa D, Okada S, Shikata Y, Wada J, Makino H (2005) Erythromycin ameliorates renal injury via anti-inflammatory effects in experimental diabetic rats. Diabetologia 48(11):2402–2411. doi:10.1007/s00125-005-1945-6 PubMedGoogle Scholar
  76. 76.
    Sanz MJ, Nabah YN, Cerdá-Nicolás M, O’Connor JE, Issekutz AC, Cortijo J, Morcillo EJ (2005) Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression. Br J Pharmacol 144(2):190–201. doi:10.1038/sj.bjp.0706021 PubMedGoogle Scholar
  77. 77.
    Yu C, Azuma A, Li Y, Wang C, Abe S, Usuki J, Matsuda K, Kudoh S, Sunazuka T, Omura S (2008) EM703, a new derivative of erythromycin, inhibits transforming growth factor-beta signaling in human lung fibroblasts. Exp Lung Res 34(6):343–354. doi:10.1080/01902140802093238 PubMedGoogle Scholar
  78. 78.
    He Z, Li B, Yu L, Liu Q, Zhong N, Ran P (2008) Suppression of oxidant-induced glutathione synthesis by erythromycin in human bronchial epithelial cells. Respiration 75(2):202–209. doi:10.1159/000111569 PubMedGoogle Scholar
  79. 79.
    Harita S, Kuyama S, Okada T, Tanizaki Y (2008) Effect of long-term and low-dose administration of erythromycin on proliferation of T lymphocytes stimulated with mitogens. J Chemother 20(5):604–608PubMedGoogle Scholar
  80. 80.
    Hirohata S, Nakanishi K (1995) Suppression of cytokine production of human memory T cells by roxithromycin. Arerugi 44(11):1322–1330PubMedGoogle Scholar
  81. 81.
    Oyama T, Sakuta T, Matsushita K, Maruyama I, Nagaoka S, Torii M (2000) Effects of roxithromycin on tumor necrosis factor-alpha-induced vascular endothelial growth factor expression in human periodontal ligament cells in culture. J Periodontol 71(10):1546–1553. doi:10.1902/jop.2000.71.10.1546 PubMedGoogle Scholar
  82. 82.
    Oyama T, Matsushita K, Sakuta T, Tokuda M, Tatsuyama S, Nagaoka S, Torii M (2007) Roxithromycin inhibits tumor necrosis factor-alpha-induced matrix metalloproteinase-1 expression through regulating mitogen-activated protein kinase phosphorylation and Ets-1 expression. J Periodontal Res 42(1):53–61. doi:10.1111/j.1600-0765.2006.00914.x PubMedGoogle Scholar
  83. 83.
    Kobayashi M, Shimauchi T, Hino R, Tokura Y (2004) Roxithromycin downmodulates Th2 chemokine production by keratinocytes and chemokine receptor expression on Th2 cells: its dual inhibitory effects on the ligands and the receptors. Cell Immunol 228(1):27–33. doi:10.1016/j.cellimm.2004.03.011 PubMedGoogle Scholar
  84. 84.
    Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, RogersRM SFC, Coxson HO, Parι PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653. doi:10.1056/NEJMoa032158 PubMedGoogle Scholar
  85. 85.
    Gompertz S, O’Brien C, Bayley DL, Hill SL, Stockley RA (2001) Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur Respir J 17:1112–1119PubMedGoogle Scholar
  86. 86.
    Barnes PJ, Chowdhury B, Kharitonov SA, Magnussen H, Page CP, Postma D, Saetta M (2006) Pulmonary biomarkers in chronic obstructive pulmonary disease. Am J Respir CritCare Med 174:6–14. doi:10.1164/rccm.200510-1659PP Google Scholar
  87. 87.
    Snell N, Newbold P (2008) The clinical utility of biomarkers in asthma and COPD. Curr Opin Pharmacol 8:222–235. doi:10.1016/j.coph.2008.04.001 PubMedGoogle Scholar
  88. 88.
    Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011) Immunomodulatory effects of macrolide antibiotics—part 2: advantages and disadvantages of long-term, low-dose macrolide therapy. Respiration 81:75–87. doi:10.1159/000320320 PubMedGoogle Scholar
  89. 89.
    López-Boado YS, Rubin BK (2008) Macrolides as immunomodulatory medications for the therapy of chronic lung diseases. Curr Opin Pharmacol 8:286–291. doi:10.1016/j.coph.2008.01.010 PubMedGoogle Scholar
  90. 90.
    Healy DP (2007) Macrolide immunomodulation of chronic respiratory diseases. Curr Infect Dis Rep 9:7–13PubMedGoogle Scholar
  91. 91.
    Bishai WR (2006) Macrolide immunomodulatory effects and symptom resolution in acute exacerbation of chronic bronchitis and acute maxillary sinusitis: a focus on clarithromycin. Expert Rev Anti Infect Ther 4:405–416. doi:10.1586/14787210.4.3.405 PubMedGoogle Scholar
  92. 92.
    Mazza-Stalder J, Siegrist CA, Janssens JP (2005) Immunization and immuno-modulation for prevention of respiratory tract infections. Rev Med Suisse 1(2645–2646):2649–2651Google Scholar
  93. 93.
    Parnham MJ, Culić O, Eraković V, Munić V, Popović-Grle S, Barisić K, Bosnar M, Brajsa K, Cepelak I, Cuzić S, Glojnarić I, Manojlović Z, Novak-Mircetić R, Oresković K, Pavicić-Beljak V, Radosević S, Sucić M (2005) Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur J Pharmacol 517:132–143PubMedGoogle Scholar
  94. 94.
    Basyigit I, Yildiz F, Ozkara SK, Yildirim E, Boyaci H, Ilgazli A (2004) The effect of clarithromycin on inflammatory markers in chronic obstructive pulmonary disease: preliminary data. Ann Pharmacother 38:1400–1405. doi:10.1345/aph.1D634 PubMedGoogle Scholar
  95. 95.
    Zhong XN, Bai J, Shi HZ, Wu C, Liang GR, Feng ZB (2003) An experimental study on airway inflammation and remodeling in a rat model of chronic bronchitis and emphysema. Zhonghua Jie He He Hu Xi Za Zhi 26:750–755PubMedGoogle Scholar
  96. 96.
    Gotfried MH (2004) Macrolides for the treatment of chronic sinusitis, asthma, and COPD. Chest 125(2 Suppl):52S–60S; quiz 60S–61S. doi: 10.1378/chest.125.2_suppl.52S
  97. 97.
    Amsden GW (2005) Anti-inflammatory effects of macrolides—an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions. J Antimicrob Chemother 55:10–21. doi:10.1093/jac/dkh519 PubMedGoogle Scholar
  98. 98.
    Martinez FJ, Curtis JL, Albert R (2008) Role of macrolide therapy in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 3:331–350PubMedGoogle Scholar
  99. 99.
    Nakanishi Y, Kobayashi D, Asano Y, Sakurai T, Kashimura M, Okuyama S, Yoneda Y, Shapiro SD, Takayama K (2009) Clarithromycin prevents smoke-induced emphysema in mice. Am J Respir Crit Care Med 179:271–278. doi:10.1164/rccm.200806-905OC PubMedGoogle Scholar
  100. 100.
    Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA (2008) Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med 178:1139–1147PubMedGoogle Scholar
  101. 101.
    He Z-Y, Ou L-M, Zhang J-Q, Bai J, Liu G-N, Li M-H, Deng J-M, Mac Nee W, Zhong X-N (2010) Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. Respiration 80:445–452. doi:10.1159/000321374 PubMedGoogle Scholar
  102. 102.
    Banerjee D, Khair OA, Honeybourne D (2005) The effect of oral clarithromycin on ealth status and sputum bacteriology in stable COPD. Respir Med 99:208–215. doi:10.1016/j.rmed.2004.06.009 PubMedGoogle Scholar
  103. 103.
    Blasi F, Bonardi D, Aliberti S, Tarsia P, Confalonieri M, Amir O, Carone M, Di Marco F, Centanni S, Guffanti E (2010) Long-term azithromycin use in patients with chronic obstructive pulmonary disease and tracheostomy. Pulm Pharmacol Ther 23:200–207. doi:10.1016/j.pupt.2009.12.002 PubMedGoogle Scholar
  104. 104.
    Léophonte P, Zuck P, Perronne C, Baconnet B (2008) Routine use of extended-release clarithromycin tablets for short-course treatment of acute exacerbations of non-severe COPD. Med Mal Infect 38:471–476. doi:10.1016/j.medmal.2008.06.029 PubMedGoogle Scholar
  105. 105.
    Gotfried M, Busman TA, Norris S, Notario GF (2007) Role for 5-day, once-daily extended-release clarithromycin in acute bacterial exacerbation of chronic bronchitis. Curr Med Res Opin 23:459–466. doi:10.1185/030079906X162827 PubMedGoogle Scholar
  106. 106.
    Zervos M, Martinez FJ, Amsden GW, Rothermel CD, Treadway G (2007) Efficacy and safety of 3-day azithromycin versus 5-day moxifloxacin for the treatment of acute bacterial exacerbations of chronic bronchitis. Int J Antimicrob Agents 29:56–61. doi:10.1016/j.ijantimicag.2006.08.043 PubMedGoogle Scholar
  107. 107.
    Gotfried M, Notario G, Spiller J, Palmer R, Busman T (2005) Comparative efficacy of once daily, 5-day short-course therapy with clarithromycin extended-release versus twice daily, 7-day therapy with clarithromycin immediate-release in acute bacterial exacerbation of chronic bronchitis. Curr Med Res Opin 21:245–254. doi:10.1185/030079905X26243 PubMedGoogle Scholar
  108. 108.
    Swanson RN, Lainez-Ventosilla A, De Salvo MC, Dunne MW, Amsden GW (2005) Once-daily azithromycin for 3 days compared with clarithromycin for 10 days for acute exacerbation of chronic bronchitis: a multicenter, double-blind, randomized study. Treat Respir Med 4:31–39PubMedGoogle Scholar
  109. 109.
    Nalepa P, Dobryniewska M, Busman T, Notario G (2003) Short-course therapy of acute bacterial exacerbation of chronic bronchitis: a double-blind, randomized, multicenter comparison of extended-release versus immediate-release clarithromycin. Curr Med Res Opin 19:411–420. doi:10.1185/030079903125002018 PubMedGoogle Scholar
  110. 110.
    Watz H, Kanniess F, Magnussen H (2007) New pharmacological options in the therapy of COPD. Pneumologie 61(6):365–373Google Scholar
  111. 111.
    Weiss K, Vanjaka A, Canadian Clarithromycin Study Group on Bronchitis (2002) An open-label, randomized, multicenter, comparative study of the efficacy and safety of 7 days of treatment with clarithromycin extended-release tablets versus clarithromycin immediate-release tablets for the treatment of patients with acute bacterial exacerbation of chronic bronchitis. Clin Ther 24:2105–2122PubMedGoogle Scholar
  112. 112.
    Gómez J, Baños V, Simarro E, Lorenzo Cruz M, Ruiz Gómez J, Latour J, Garcia Martin E, Canteras M, Valdes M (2000) Prospective, comparative study (1994–1998) of the influence of short-term prophylactic treatment with azithromycin on patients with advanced COPD. Rev Esp Quimioter 13:379–383PubMedGoogle Scholar
  113. 113.
    Falagas ME, Avgeri SG, Matthaiou DK, Dimopoulos G, Siempos II (2008) Short- versus long-duration antimicrobial treatment for exacerbations of chronic bronchitis: a meta-analysis. J Antimicrob Chemother 62:442–450. doi:10.1093/jac/dkn201 PubMedGoogle Scholar
  114. 114.
    Anzueto A, Rizzo JA, Grossman RF (1999) The infection-free interval: its use in evaluating antimicrobial treatment of acute exacerbation of chronic bronchitis. Clin Infect Dis 28:1344–1345. doi:10.1086/517802 PubMedGoogle Scholar
  115. 115.
    White AJ, Gompertz S, Bayley DL, Hill SL, O’Brien C, Unsal I, Stockley RA (2003) Resolution of bronchial inflammation is related to bacterial eradication following treatment of exacerbations of chronic bronchitis. Thorax 58:680–685PubMedGoogle Scholar
  116. 116.
    Llor C, Cots JM, Herreras A (2006) Bacterial etiology of chronic bronchitis exacerbations treated by primary care physicians. Arch Bronconeumol 42:388–393PubMedGoogle Scholar
  117. 117.
    Dewan NA, Rafique S, Kanwar B, Satpathy H, Ryschon K, Tillotson GS, Niederman MS (2000) Acute exacerbation of COPD: factors associated with poor treatment outcome. Chest 117:662–761. doi:10.1378/chest.117.3.662 PubMedGoogle Scholar
  118. 118.
    Patel IS, Seemungal TAR, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA (2002) Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57:759–764PubMedGoogle Scholar
  119. 119.
    Chodosh S, Schreurs A, Siami G, Barkman HW Jr, Anzueto A, Shan M, Moesker H, Stack T, Kowalsky S (1998) Efficacy of oral ciprofloxacin versus clarithromycin for treatment of acute bacterial exacerbations of chronic bronchitis. Clin Infect Dis 27:730–738. doi:10.1086/514934 PubMedGoogle Scholar
  120. 120.
    Miravitlles M (2002) Exacerbations of chronic obstructive pulmonary disease: when are bacteria important. Eur Respir J 20:9s–19sGoogle Scholar
  121. 121.
    Sethi S, Evans N, Grant BJ, Murphy TF (2002) New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 347:465–471. doi:10.1056/NEJMoa012561 PubMedGoogle Scholar
  122. 122.
    Lode H, Eller J, Linnhoff A, Ioanas M, the Evaluation of Therapy-Free Interval in COPD Patients Study Group (2004) Levofloxacin versus clarithromycin in COPD exacerbation: focus on exacerbation-free interval. Eur Respir J 24:947–953. doi:10.1183/09031936.04.00009604 PubMedGoogle Scholar
  123. 123.
    Rothberg MB, Pekow PS, Lahti M, Brody O, Skiest DJ, Lindenauer PK (2010) Comparative effectiveness of macrolides and quinolones for patients hospitalized with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). J Hosp Med 5:261–267. doi:10.1002/jhm.628 PubMedGoogle Scholar
  124. 124.
    Van Bambeke F, Tulkens PM (2009) Safety profile of the respiratory fluoroquinolone moxifloxacin: comparison with other fluoroquinolones and other antibacterial classes. Drug Saf 32:359–378. doi:10.2165/00002018-200932050-00001 PubMedGoogle Scholar
  125. 125.
    Dvoretskiĭ LI, Dubrovskaia NV, Grudinina SA, Filimonova OIu, Sidorenko SV, Iakovlev SV (2007) Levofloxacin and macrolides in chronic bronchitis exacerbation: comparative analysis of the treatment efficacy and non relapsing periods. Antibiot Khimioter 52:21–31PubMedGoogle Scholar
  126. 126.
    Miravitlles M, Llor C, Naberan K, Cots JM, Molina J, for the EFEMAP study group (2005) Variables associated with recovery from acute exacerbations of chronic bronchitis and chronic obstructive pulmonary disease. Respir Med 99:955–965. doi:10.1016/j.rmed.2005.01.013 PubMedGoogle Scholar
  127. 127.
    Khan S, Javaid A, Ghori RA, Mahmood K, Anwer N, Khan SU, Iqbal ZH, Rahman F, Ullah S, Imran K, Akhter N, Khan MK, Siddqui SJ, Fareed A, Khan MH (2003) Cefaclor AF vs clarithromycin in acute exacerbation of chronic bronchitis (B3M-PK-AJBG). J Pak Med Assoc 53:338–345PubMedGoogle Scholar
  128. 128.
    Weiss LR (2002) Open-label, randomized comparison of the efficacy and tolerability of clarithromycin, levofloxacin, and cefuroxime axetil in the treatment of adults with acute bacterial exacerbations of chronic bronchitis. Clin Ther 24:1414–1425PubMedGoogle Scholar
  129. 129.
    Alvarez Gutiérrez FJ, Soto Campos G, del Castillo OD, Sánchez Gómez J, Calderón Osuna E, Rodríguez Becerra E, Castillo Gómez J (1999) A randomized comparative study of 3 days of azithromycin treatment and 10 days of cefuroxime treatment in exacerbations in patients with chronic obstructive pulmonary disease. Med Clin (Barc) 113:124–128Google Scholar
  130. 130.
    Andre-Alves MR, Jardim JR, Frare e Silva R, Fiss E, Freire DN, Teixeira PJ (2007) Comparison between azithromycin and amoxicillin in the treatment of infectious exacerbation of chronic obstructive pulmonary disease. J Bras Pneumol 33:43–50Google Scholar
  131. 131.
    Amsden GW, Baird IM, Simon S, Treadway G (2003) Efficacy and safety of azithromycin vs levofloxacin in the outpatient treatment of acute bacterial exacerbations of chronic bronchitis. Chest 123:772–777PubMedGoogle Scholar
  132. 132.
    Siempos II, Dimopoulos G, Korbila IP, Manta K, Falagas ME (2007) Macrolides, quinolones and amoxicillin/clavulanate for chronic bronchitis: a meta-analysis. Eur Respir J 29:1127–1137. doi:10.1183/09031936.00147806 PubMedGoogle Scholar
  133. 133.
    Wilson R, Schentag JJ, Ball P, Mandell L (2002) A comparison of gemifloxacin and clarithromycin in acute exacerbations of chronic bronchitis and long-term clinical outcomes. Clin Ther 24:639–652PubMedGoogle Scholar
  134. 134.
    Wilson R, Allegra L, Huchon G, Izquierdo JL, Jones P, Schaberg T, Sagnier PP, MOSAIC Study Group (2004) Short and long-term outcomes of moxifloxacin compared to standard antibiotic treatment in acute exacerbations of chronic bronchitis. Chest 125:953–964PubMedGoogle Scholar
  135. 135.
    Miravitlles M, Espinosa C, Ferna’ndez-Laso E, Martos JA, Maldonado JA, Gallego M (1999) Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest 116:40–46PubMedGoogle Scholar
  136. 136.
    Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, Johnston SL (2002) Frequency, severity and duration of rhinovirus infections in asthmatics and non-asthmatic individuals: a longitudinal study. Lancet 359:831–834. doi:10.1016/S0140-6736(02)07953-9 PubMedGoogle Scholar
  137. 137.
    Papadopoulos NG, Papi A, Psarsas S, Johnston SL (2004) Mechanisms of rhinovirus induced asthma. Paediatr Respir Rev 5:255–260. doi:10.1016/j.prrv.2004.04.002 PubMedGoogle Scholar
  138. 138.
    Haruna S, Shimada C, Ozawa M, Fukami S, Moriyama H (2009) A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology 47:66–71PubMedGoogle Scholar
  139. 139.
    Gielen V, Johnston SL, Edwards MR (2010) Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 36:646–654. doi:10.1183/09031936.00095809 PubMedGoogle Scholar
  140. 140.
    Korematsu S, Yamamoto K, Nagakura T, Miyahara H, Okazaki N, Akiyoshi K, Maeda T, Suenobu S, Izumi T (2000) The indication and effectiveness of low-dose erythromycin therapy in pediatric patients with bronchial asthma. Pediatr Allergy Immunol 21:489–492. doi:10.1111/j.1399-3038.2009.00941.x Google Scholar
  141. 141.
    Sato E, Nelson DK, Koyama S, Hoyt JC, Robbins RA (2001) Erythromycin modulates eosinophil chemotactic cytokine production by human lung fibroblasts in vitro. Antimicrob Agents Chemother 45:401–406. doi:10.1128/AAC.8.2.401-406.2001 PubMedGoogle Scholar
  142. 142.
    Kaukoranta-Tolvanen SS, Teppo AM, Laitinen K, Saikku P, Limavuori K, Leinonen M (1966) Growth of Chlamydia pneumoniae in cultured human peripheral blood mononuclear cells and infection induction of cytokine response. Microb Pathog 21:215–221. doi:10.1006/mpat.1996.0056 Google Scholar
  143. 143.
    Redecke V, Dalhoff K, Bohnet S, Braun J, Maas M (1998) Interaction of Chlamydia pneumoniae and human alveolar macrophages. Am J Respir Cell Mol Bio 19(5):721–7Google Scholar
  144. 144.
    Rottier BL, Duiverman EJ (2009) Anti-inflammatory drug therapy in asthma. Paediatr Respir Rev 10:214–219. doi:10.1016/j.prrv.2009.06.007 PubMedGoogle Scholar
  145. 145.
    Feldman C, Anderson R, Theron AJ, Ramafi G, Cole PJ, Wilson R (1997) Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro. Inflammation 21:655–65PubMedGoogle Scholar
  146. 146.
    Blasi F, Aliberti S, Allegra L, Piatti G, Tarsia P, Ossewaardl JM, Verweij V, Nijkamp FP, Folkerts G (2007) Chlamydia pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice. Respir Res 19:83. doi:10.1186/1465-9921-8-83 Google Scholar
  147. 147.
    Rollins DR, Beuther DA, Martin RJ (2010) Update on infection and antibiotics in asthma. Curr Allergy Asthma Rep 10:67–73. doi:10.1007/s11882-009-0086-2 PubMedGoogle Scholar
  148. 148.
    Black PN (2007) Antibiotics for the treatment of asthma. Curr Opin Pharmacol 7:266–271. doi:10.1016/j.coph.2006.11.013 PubMedGoogle Scholar
  149. 149.
    Sharma S, Jaffe A, Dixon G (2007) Immunomodulatory effects of macrolide antibiotics in respiratory disease: therapeutic implications for asthma and cystic fibrosis. Paediatr Drugs 9:107–118PubMedGoogle Scholar
  150. 150.
    Takizawa H (2007) Novel strategies for the treatment of asthma. Recent Pat Inflamm Allergy Drug Discov 1:13–19PubMedGoogle Scholar
  151. 151.
    Richeldi L, Ferrara G, Fabbri LM, Lasserson TJ, Gibson PG (2005) Macrolides for chronic asthma. Cochrane Database Syst Rev (4):CD002997. doi: 10.1002/14651858.CD002997.pub2
  152. 152.
    He JX, Zhao SY, Jiang ZF (2005) Demonstration of a mechanism of anti-inflammatory effect of erythromycin on allergic airway inflammation in rat. Zhonghua Er Ke Za Zhi 43:196–198PubMedGoogle Scholar
  153. 153.
    Blasi F, Cosentini R, Tarsia P, Allegra L (2004) Potential role of antibiotics in the treatment of asthma. Curr Drug Targets Inflamm Allergy 3:237–242PubMedGoogle Scholar
  154. 154.
    Cazzola M, Matera MG, Blasi F (2004) Macrolide and occult infection in asthma. Curr Opin Pulm Med 10:7–14PubMedGoogle Scholar
  155. 155.
    Piacentini GL, Peroni DG, Bodini A, Pigozzi R, Costella S, Loiacono A, Boner AL (2007) Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: a preliminary report. Allergy Asthma Proc 28:194–198PubMedGoogle Scholar
  156. 156.
    Sutherland ER, King TS, Icitovic N, Ameredes BT, Bleecker E, Boushey HA, Calhoun WJ, Castro M, Cherniack RM, Chinchilli VM, Craig TJ, Denlinger L, DiMango EA, Fahy JV, Israel E, Jarjour N, Kraft M, Lazarus SC, Lemanske RF Jr, Peters SP, Ramsdell J, Sorkness CA, Szefler SJ, Walter MJ, Wasserman SI, Wechsler ME, Chu HW, Martin RJ, National Heart, Lung and Blood Institute’s Asthma Clinical Research Network (2010) A trial of clarithromycin for the treatment of suboptimally controlled asthma. Allergy Clin Immunol 126:747–753. doi:10.1016/j.jaci.2010.07.024 Google Scholar
  157. 157.
    Haruna S, Shimada C, Ozawa M, Fukami S, Moriyama H (2009) A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology 47:66–71PubMedGoogle Scholar
  158. 158.
    Ferrara G, Losi M, Franco F, Corbetta L, Fabbri LM, Richeldi L (2005) Macrolides in the treatment of asthma and cystic fibrosis. Respir Med 99:1–10PubMedGoogle Scholar
  159. 159.
    Ogawa N, Sugawara Y, Fujiwara Y, Noma T (2003) Roxithromycin promotes lymphocyte apoptosis in Dermatophagoides-sensitive asthma patients. Eur J Pharmacol 474:273–281PubMedGoogle Scholar
  160. 160.
    Ekici A, Ekici M, Erdemoğlu AK (2002) Effect of azithromycin on the severity of bronchial hyperresponsiveness in patients with mild asthma. J Asthma 39:181–185. doi:10.1081/JAS-120002199 PubMedGoogle Scholar
  161. 161.
    Xiao W, Yu H, Zheng C (2000) The imbalance of Th1/Th2 cytokine expression in peripheral blood mononuclear cell from asthmatic patients and the effect of erythromycin on these cytokines. Zhonghua Jie He He Hu Xi Za Zhi 23:347–350PubMedGoogle Scholar
  162. 162.
    Spahn JD, Fost DA, Covar R, Martin RJ, Brown EE, Szefler SJ, Leung DY (2001) Clarithromycin potentiates glucocorticoid responsiveness in patients with asthma: results of a pilot study. Ann Allergy Asthma Immunol 87:501–505PubMedGoogle Scholar
  163. 163.
    Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T, Nakagawa H, Hasegawa H, Nakabayashi M, Ishizaki Y (2000) Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol 84:594–598PubMedGoogle Scholar
  164. 164.
    Kostadima E, Tsiodras S, Alexopoulos EI, Kaditis AG, Mavrou I, Georgatou N, Papamichalopoulos A (2004) Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma. Eur Respir J 23:714–717. doi:10.1183/09031936.04.00118404 PubMedGoogle Scholar
  165. 165.
    Hatipoglu U, Rubinstein I (2004) Low-dose, long-term macrolide therapy in asthma: an overview. Clin Mol Allergy 2:4. doi:10.1186/1476-7961-2-4 PubMedGoogle Scholar
  166. 166.
    Kutlin A, Roblin PM, Hammerschlag MR (2002) Effect of prolonged treatment with azithromycin, clarithromycin, or levofloxacin on Chlamydia pneumoniae in a continuous-infection model. Antimicrob Agents Chemother 46:409–412. doi:10.1128/AAC.46.2.409-412.2002 PubMedGoogle Scholar
  167. 167.
    Black PN, Blasi F, Jenkins CR, Scicchitano R, Mills GD, Rubinfeld AR, Ruffin RE, Mullins PR, Dangain J, Cooper BC, David DB, Allegra L (2001) Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae. Am J Respir Crit Care Med 164:536–541PubMedGoogle Scholar
  168. 168.
    Garey KW, Rubinstein I, Gotfried MH, Khan IJ, Varma S, Danziger LH (2000) Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma. Chest 118:1826–1827PubMedGoogle Scholar
  169. 169.
    Gryglicka B, Wegrzyn-Szkutnik I, Michnar M, Mazur E, Niedźwiadek J, Milanowski J (2003) Evaluation of an anti-chlamydial antibiotic therapy influence on asthma patients. Ann Univ Mariae Curie Sklodowska Med 58:444–451PubMedGoogle Scholar
  170. 170.
    Shimizu T, Kato M, Mochizuki H, Takei K, Maeda S, Tokuyama K, Morikawa A (1997) Roxithromycin attenuates acid-induced cough and water-induced bronchoconstriction in children with asthma. J Asthma 34:211–217. doi:10.3109/02770909709068191 PubMedGoogle Scholar
  171. 171.
    Huang TJ, Eynott P, Salmon M, Nicklin PL, Chung KF (2002) Effect of topical immunomodulators on acute allergic inflammation and bronchial hyperresponsiveness in sensitised rats. Eur J Pharmacol 437:187–194PubMedGoogle Scholar
  172. 172.
    Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H (1999) Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma. Clin Exp Allergy 29:950–956. doi:10.1046/j.1365-2222.1999.00551.x PubMedGoogle Scholar
  173. 173.
    Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177:148–155. doi:10.1164/rccm.200707-1134OC PubMedGoogle Scholar
  174. 174.
    Chu HW, Kraft M, Rex MD, Martin RJ (2001) Evaluation of blood vessels and edema in the airways of asthma patients: regulation with clarithromycin treatment. Chest 120:416–422PubMedGoogle Scholar
  175. 175.
    Nelson HS, Hamilos DL, Corsello PR, Levesque NV, Buchmeier AD, Bucher BL (1993) A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids. Am Rev Respir Dis 147(2):398–404PubMedGoogle Scholar
  176. 176.
    Kamada AK, Hill MR, Iklé DN, Brenner AM, Szefler SJ (1993) Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol 91(4):873–882. doi:10.1016/0091-6749(93)90345-G PubMedGoogle Scholar
  177. 177.
    Johnston SL, Blasi F, Black PN, Martin RJ, Farrell DJ, Nieman RB, Investigators TELICAST (2006) The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 354(15):1589–1600. doi:10.1056/NEJMoa044080 PubMedGoogle Scholar
  178. 178.
    Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) ATS/ERS Task Force: standardisation of spirometry. Eur Respir J 26(2):319–338. doi:10.1183/09031936.00130010 PubMedGoogle Scholar
  179. 179.
    Miyatake H, Taki F, Taniguchi H, Suzuki R, Takagi K, Satake T, Miyatake H, Taki F, Taniguchi H, Suzuki R, Takagi K, Satake T (1991) Erythromycin reduces the severity of bronchial hyperresponsiveness in asthma. Chest 99(3):670–673. doi:10.1378/chest.99.3.670 PubMedGoogle Scholar
  180. 180.
    Hersperger R, Buchheit KH, Cammisuli S, Enz A, Lohse O, Ponelle M, Schuler W, Schweitzer A, Walker C, Zehender H, Zenke G, Zimmerlin AG, Zollinger M, Mazzoni L, Fozard JR (2004) A locally active antiinflammatory macrolide (MLD987) for inhalation therapy of asthma. J Med Chem 47:4950–4957. doi:10.1021/jm031101l PubMedGoogle Scholar
  181. 181.
    Govan JR, Nelson JW (1992) Microbiology of lung infection in cystic fibrosis. Br Med Bull 48:912–930PubMedGoogle Scholar
  182. 182.
    Kahn TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082Google Scholar
  183. 183.
    Armstrong DS, Grimwood K, Carlin JB, Carzino R, Gutièrrez JP, Hull J, Olinsky A, Phelan EM, Robertson CF, Phelan PD (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156:1197–1204PubMedGoogle Scholar
  184. 184.
    Ramsey B (1996) Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 335:179–188. doi:10.1056/NEJM199607183350307 PubMedGoogle Scholar
  185. 185.
    Armstrong DS, Grimwood K, Carzino R, Gutièrrez JP, Hull J, Olinsky A, Phelan EM, Robertson CF, Phelan PD (1995) Lower respiratory tract infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 310:1571–1572PubMedGoogle Scholar
  186. 186.
    Konstan MW, Hilliard KA, Norvell TM, Berger M (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150:448–454PubMedGoogle Scholar
  187. 187.
    Auerbach HS, William M, Kirkpatrick JA, Cloten HR (1985) Alternate day prednisolone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 2:686–688. doi:10.1016/S0140-6736(85)92929-0 PubMedGoogle Scholar
  188. 188.
    Eigen H, Rosenstein BJ, Fitzsimmons S, Schidlow DV, Cystic Fibrosis Foundation Prednisolone Trial Group (1995) A multicenter study of alternate day prednisolone therapy in patients with cystic fibrosis. J Pediatr 126:515–523. doi:10.1016/S0022-3476(95)70343-8 PubMedGoogle Scholar
  189. 189.
    Jaffe A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31:464–473. doi:10.1002/ppul.1076 PubMedGoogle Scholar
  190. 190.
    Tai S, Sudo E, Sun F et al (1999) Effect of azithromycin on sputum rheology in cystic fibrosis patients (abstract). Pediatr Pulmonol Suppl 19:264Google Scholar
  191. 191.
    Fisher JJ, Baumon U, Gudowius P et al (1999) Azithromycin reduces epithelial adherence of P. aeruginosa in patients with cystic fibrosis (abstract). Pediatr Pulmonol Suppl 19:265Google Scholar
  192. 192.
    Fecik RA, Nguyen PL, Venkatraman L (2005) Approaches to the synthesis of immunolides: selective immunomodulatory macrolides for cystic fibrosis. Curr Opin Drug Discov Devel 8:741–747PubMedGoogle Scholar
  193. 193.
    Bell SC, Senini SL, McCormack JG (2005) Macrolides in cystic fibrosis. Chron Respir Dis 2:85–98. doi:10.1191/1479972305cd066rs PubMedGoogle Scholar
  194. 194.
    Equi AC, Davies JC, Painter H, Hyde S, Bush A, Geddes DM, Alton EW (2006) Exploring the mechanisms of macrolides in cystic fibrosis. Respir Med 100:687–697. doi:10.1016/j.rmed.2005.07.016 PubMedGoogle Scholar
  195. 195.
    Cai Y, Chai D, Wang R, Bai N, Liang BB, Liu Y (2011) Effectiveness and safety of macrolides in cystic fibrosis patients: a meta-analysis and systematic review. J Antimicrob Chemother 66:968–978. doi:10.1093/jac/dkr040 PubMedGoogle Scholar
  196. 196.
    Yousef AA, Jaffe A (2010) The role of azithromycin in patients with cystic fibrosis. Paediatr Respir Rev :108–114. doi: 10.1016/j.prrv.2009.12.003
  197. 197.
    Doğru D, Dalgiç F, Kiper N, Ozçelik U, Yalçin E, Aslan AT, Gürcan N, Saricaoğlu F, Gür D, Karayazgan Y, Firat P (2009) Long-term clarithromycin in cystic fibrosis: effects on inflammatory markers in BAL and clinical status. Turk J Pediatr 51:416–423PubMedGoogle Scholar
  198. 198.
    Kabra SK, Pawaiya R, Lodha R, Kapil A, Kabra M, Vani AS, Agarwal G, Shastri SS (2010) Long-term daily high and low doses of azithromycin in children with cystic fibrosis: a randomized controlled trial. J Cyst Fibros 9:17–23. doi:10.1016/j.jcf.2009.09.001 PubMedGoogle Scholar
  199. 199.
    Oliynyk I, Varelogianni G, Schalling M, Asplund MS, Roomans GM, Johannesson M (2009) Azithromycin increases chloride efflux from cystic fibrosis airway epithelial cells. Exp Lung Res 35:210–221. doi:10.1080/01902140802534967 PubMedGoogle Scholar
  200. 200.
    Florescu DF, Murphy PJ, Kalil AC (2009) Effects of prolonged use of azithromycin in patients with cystic fibrosis: a meta-analysis. Pulm Pharmacol Ther 22:467–472. doi:10.1016/j.pupt.2009.03.002 PubMedGoogle Scholar
  201. 201.
    Tsai WC, Hershenson MB, Zhou Y, Sajjan U (2009) Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res 58:491–501. doi:10.1007/s00011-009-0015-9 PubMedGoogle Scholar
  202. 202.
    Hansen CR, Pressler T, Hoiby N, Johansen HK (2009) Long-term, low-dose azithromycin treatment reduces the incidence but increases macrolide resistance in Staphylococcus aureus in Danish CF patients. J Cyst Fibros 8:58–62. doi:10.1016/j.jcf.2008.09.001 PubMedGoogle Scholar
  203. 203.
    Steinkamp G, Schmitt-Grohe S, Döring G, Staab D, Pfründer D, Beck G, Schubert R, Zielen S (2008) Once-weekly azithromycin in cystic fibrosis with chronic Pseudomonas aeruginosa infection. Respir Med 102:164316–53Google Scholar
  204. 204.
    Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P (2007) Effects of azithromycin on the expression of ATP binding cassette transporters in epithelial cells from the airways of cystic fibrosis patients. J Chemother 19:643–649. doi:10.1016/j.rmed.2008.03.009 PubMedGoogle Scholar
  205. 205.
    Nguyen D, Emond MJ, Mayer-Hamblett N, Saiman L, Marshall BC, Burns JL (2007) Clinical response to azithromycin in cystic fibrosis correlates with in vitro effects on Pseudomonas aeruginosa phenotypes. Pediatr Pulmonol 42:533–541. doi:10.1002/ppul.20620 PubMedGoogle Scholar
  206. 206.
    McArdle JR, Talwalkar JS (2007) Macrolides in cystic fibrosis. Clin Chest Med 28(2):347–360PubMedGoogle Scholar
  207. 207.
    Fayon M, Airway-Inflammation Group, Société Française de Mucoviscidose (2006) CF-Emerging therapies: modulation inflammation. Paediatr Respir Rev7 Suppl 1:S170–S174. doi: 10.1016/j.prrv.2006.04.212
  208. 208.
    Wilms EB, Touw DJ, Heijerman HG (2006) Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit 28:219–225. doi:10.1097/01.ftd.0000195617.69721.a5 PubMedGoogle Scholar
  209. 209.
    Prescott WA Jr, Johnson CE (2005) Antiinflammatory therapies for cystic fibrosis: past, present, and future. Pharmacotherapy 25:555–573PubMedGoogle Scholar
  210. 210.
    Hansen CR, Pressler T, Koch C, Høiby N (2005) Long-term azitromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection; an observational cohort study. J Cyst Fibros 4:35–40. doi:10.1016/j.jcf.2004.09.001 PubMedGoogle Scholar
  211. 211.
    Saiman L (2004) The use of macrolide antibiotics in patients with cystic fibrosis. Curr Opin Pulm Med 10:515–523PubMedGoogle Scholar
  212. 212.
    Pirzada OM, McGaw J, Taylor CJ, Everard ML (2003) Improved lung function and body mass index associated with long-term use of macrolide antibiotics. J Cyst Fibros 2:69–71. doi:10.1016/S1569-1993(03)00021-3 PubMedGoogle Scholar
  213. 213.
    Carr RR, Nahata MC (2004) Azithromycin for improving pulmonary function in cystic fibrosis. Ann Pharmacother 38:1520–1524. doi:10.1345/aph.1D589 PubMedGoogle Scholar
  214. 214.
    Southern KW, Barker PM, Solis A (2004) Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev (2):CD002203. doi: 10.1002/14651858.CD002203.pub2
  215. 215.
    Wolter JM, Seeney SL, McCormack JG (2002) Macrolides in cystic fibrosis: is there a role? Am J Respir Med 1:235–241PubMedGoogle Scholar
  216. 216.
    Gaylor AS, Reilly JC (2002) Therapy with macrolides in patients with cystic fibrosis. Pharmacotherapy 22:227–239PubMedGoogle Scholar
  217. 217.
    Oermann CM (2001) Anti-inflammatory approaches to the treatment of cystic fibrosis lung disease: past, present and future. Curr Opin Investig Drugs 2:90090–6Google Scholar
  218. 218.
    Pukhalsky AL, Shmarina GV, Kapranov NI, Kokarovtseva SN, Pukhalskaya D, Kashirskaja NJ (2004) Anti-inflammatory and immune-modulating effects of clarithromycin in patients with cystic fibrosis lung disease. Mediators Inflamm 13:111–117. doi:10.1080/09629350410001688495 PubMedGoogle Scholar
  219. 219.
    Wagner T, Soong G, Sokol S, Saiman L, Prince A (2005) Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients. Chest 128:912–919. doi:10.1378/chest.128.2.912 PubMedGoogle Scholar
  220. 220.
    Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:21221–6Google Scholar
  221. 221.
    Beringer P, Huynh KM, Kriengkauykiat J, Bi L, Hoem N, Louie S, Han E, Nguyen T, Hsu D, Rao PA, Shapiro B, Gill M (2005) Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. Antimicrob Agents Chemother 49:5013–5017. doi:10.1128/AAC.49.12.5013-5017.2005 PubMedGoogle Scholar
  222. 222.
    Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW 3rd, Macrolide Study Group (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756. doi:10.1001/jama.290.13.1749 PubMedGoogle Scholar
  223. 223.
    Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP (2006) Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 61:895–902PubMedGoogle Scholar
  224. 224.
    Saiman L, Anstead M, Mayer-Hamblett N, Lands LC, Kloster M, Hocevar-Trnka J, Goss CH, Rose LM, Burns JL, Burns JL, Marshall BC, Ratjen F, AZ0004 Azithromycin Study Group (2010) Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 303:1707–1715. doi:10.1001/jama.2010.563 PubMedGoogle Scholar
  225. 225.
    McCormack J, Bell S, Senini S, Walmsley K, Patel K, Wainwright C, Serisier D, Harris M, Bowler S (2007) Daily versus weekly azithromycin in cystic fibrosis patients. Eur Respir J 30:487–495. doi:10.1183/09031936.00163306 PubMedGoogle Scholar
  226. 226.
    Baumann U, King M, App EM, Tai S, König A, Fischer JJ, Zimmermann T, Sextro W, von der Hardt H (2004) Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J 11:151–155PubMedGoogle Scholar
  227. 227.
    Saiman L, Mayer-Hamblett N, Campbell P, Marshall BC, Macrolide Study Group (2005) Heterogeneity of treatment response to azithromycin in patients with cystic fibrosis. Am J Respir Crit Care Med 172:1008–1012. doi: 10.1164/rccm.200502-218OCGoogle Scholar
  228. 228.
    Oliynyk I, Varelogianni G, Schalling M, Asplund MS, Roomans GM, Johannesson M (2009) Azithromycin increases chloride efflux from cystic fibrosis airway epithelial cells. Exp Lung Res 35:210–221. doi:10.1080/01902140802534967 PubMedGoogle Scholar
  229. 229.
    Gavilanes X, Huaux F, Meyer M, Lebecque P, Marbaix E, Lison D, Scholte B, Wallemacq P, Leal T (2009) Azithromycin fails to reduce increased expression of neutrophil-related cytokines in primary-cultured epithelial cells from cystic fibrosis mice. J Cyst Fibros 8:203–210. doi:10.1016/j.jcf.2009.03.003 PubMedGoogle Scholar
  230. 230.
    Meyer M, Hodson M, Bush A (2007) Respiratory disease: non-infectious complications. In: Hodson M, Geddes D, Bush A (eds) Cystic fibrosis, 3rd ed. Arnold, London, p. 166–167Google Scholar
  231. 231.
    Floto RA, Haworth (2011) Bronchiectasis. European respiratory monograph 52. European Respiratory Society, SheffieldGoogle Scholar
  232. 232.
    Wilson R (2002) Bronchiectasis. In: Gibson J, Geddes D, Costabel U (eds) Respiratory medicine, 3rd ed. WB Saunders, Edinburgh, pp 1145–464Google Scholar
  233. 233.
    Rayner CF, Tillotson G, Cole PJ, Wilson R (1994) Efficacy and safety of long-term ciprofloxacin in the management of severe bronchiectasis. J Antimicrob Chemother 34:149–156. doi:10.1093/jac/34.1.149 PubMedGoogle Scholar
  234. 234.
    Serisier DJ, Martin ML (2011) Long-term, low-dose erythromycin in bronchiectasis subjects with frequent infective exacerbations. Respir Med 105:946–949. doi:10.1016/j.rmed.2011.01.009 PubMedGoogle Scholar
  235. 235.
    Anwar GA, Bourke SC, Afolabi G, Middleton P, Ward C, Rutherford RM (2008) Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med 102:1494–1496. doi:10.1016/j.rmed.2008.06.005 PubMedGoogle Scholar
  236. 236.
    Verleden GM, Dupont LJ, Vanhaecke J, Daenen W, Van Raemdonck DE (2005) Effect of azithromycin on bronchiectasis and pulmonary function in a heart-lung transplant patient with severe chronic allograft dysfunction: a case report. J Heart Lung Transplant 24:1155–1158. doi:10.1016/j.healun.2004.06.025 PubMedGoogle Scholar
  237. 237.
    Cymbala AA, Edmonds LC, Bauer MA, Jederlinic PJ, May JJ, Victory JM, Amsden GW (2005) The disease-modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis. Treat Respir Med 4:117–122PubMedGoogle Scholar
  238. 238.
    Shibuya Y, Wills PJ, Cole PJ (2002) The effect of erythromycin on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum. Respiration 68:615–619Google Scholar
  239. 239.
    Tsang KW, Roberts P, Read RC, Kees F, Wilson R, Cole PJ (1994) The concentrations of clarithromycin and its 14-hydroxy metabolite in sputum of patients with bronchiectasis following single dose oral administration. J Antimicrob Chemother 33:289–297. doi:10.1093/jac/33.2.289 PubMedGoogle Scholar
  240. 240.
    Tsang KW, Ho PI, Chan KN, Ip MS, Lam WK, Ho CS, Yuen KY, Ooi GC, Amitani R, Tanaka E (1999) A pilot study of low-dose erythromycin in bronchiectasis. Eur Respir J 13:361–364PubMedGoogle Scholar
  241. 241.
    Crosbie PA, Woodhead MA (2009) Long-term macrolide therapy in chronic inflammatory airway diseases. Eur Respir J 33:171–181. doi:10.1183/09031936.00042208 PubMedGoogle Scholar
  242. 242.
    Yalcin E, KiperN OU, Doğru D, Firat P, Sahin A, Ariyürek M, Mocan G, Gürcan N, Göçmen A (2006) Effects of clarithromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. J Clin Pharm Ther 31:49–55. doi:10.1111/j.1365-2710.2006.00708.x PubMedGoogle Scholar
  243. 243.
    Davies G, Wilson R (2004) Prophylactic antibiotic treatment of bronchiectasis with azithromycin. Thorax 59(6):540–541PubMedGoogle Scholar
  244. 244.
    Koh YY, Lee MH, Sun YH, Sung KW, Chae JH (1997) Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study. Eur Respir J 10(5):994–999PubMedGoogle Scholar
  245. 245.
    Dhillon GS, Valentine VG, Levitt J, Patel P, Gupta MR, Duncan SR, Seoane L, Weill D (2011) Clarithromycin for prevention of bronchiolitis obliterans syndrome in lung allograft recipients. Clin Transplant 24. doi:10.1111/j.1399-0012.2011.01420.x
  246. 246.
    Remund K, Rechsteiner T, Guo Z, Rentsch K, Boehler A (2009) The macrolide clarithromycin inhibits experimental post-transplant bronchiolitis obliterans. Exp Lung Res 35:830–840. doi:10.3109/01902140902918755 PubMedGoogle Scholar
  247. 247.
    Keicho N, Kudoh S (2002) Diffuse panbronchiolitis: role of macrolides in therapy. Am J Respir Med 1:119–131PubMedGoogle Scholar
  248. 248.
    Fietta AM, Meloni F (2008) Lung transplantation: the role of azithromycin in the management of patients with bronchiolitis obliterans syndrome. Curr Med Chem 15:716–723PubMedGoogle Scholar
  249. 249.
    Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T (2008) Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation 85:36–41. doi:10.1097/01.tp.0000295981.84633.bc PubMedGoogle Scholar
  250. 250.
    Shitrit D, Bendayan D, Gidon S, Saute M, Bakal I, Kramer MR (2005) Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients. J Heart Lung Transplant 24:1440–1443PubMedGoogle Scholar
  251. 251.
    Kadota J, Mukae H, Tomono K, Kohno S, Nasu M (2004) Efficacy of long-term macrolide antibiotic therapy in patients with diffuse panbronchiolitis: comparison between HLA-B54-positive and -negative cases. Int J Antimicrob Agents 24:550–554. doi:10.1016/j.ijantimicag.2004.07.012 PubMedGoogle Scholar
  252. 252.
    Park SJ, Lee YC, Rhee YK, Lee HB (2004) The effect of long-term treatment with erythromycin on Th1 and Th2 cytokines in diffuse panbronchiolitis. Biochem Biophys Res Commun 324:114–117PubMedGoogle Scholar
  253. 253.
    Verleden GM, Dupont LJ (2004) Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 77:1465–1467PubMedGoogle Scholar
  254. 254.
    Kadota J, Mukae H, Ishii H, Nagata T, Kaida H, Tomono K, Kohno S (2003) Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis. Respir Med 97:8448–50Google Scholar
  255. 255.
    Liu Y, Hu H, Zhang J (1999) A clinical trial of 14 and 15 membered macrolides in treating six cases of diffuse panbronchiolitis. Zhonghua Nei Ke Za Zhi 38:622–624PubMedGoogle Scholar
  256. 256.
    Jain R, Hachem RR, Morrell MR, Trulock EP, Chakinala MM, Yusen RD, Huang HJ, Mohanakumar T, Patterson GA, Walter MJ (2010) Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant 29:531–537. doi:10.1016/j.healun.2009.12.003 PubMedGoogle Scholar
  257. 257.
    Porhownik NR, Batobara W, Kepron W, Unruh HW, Bshouty Z (2008) Effect of maintenance azithromycin on established bronchiolitis obliterans syndrome in lung transplant patients. Can Respir J 15:199–202PubMedGoogle Scholar
  258. 258.
    Yates B, Murphy DM, Forrest IA, Ward C, Rutherford RM, Fisher AJ, Lordan JL, Dark JH, Corris PA (2005) Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 172:772–775. doi:10.1164/rccm.200411-1537OC PubMedGoogle Scholar
  259. 259.
    Vanaudenaerde BM, Meyts I, Vos R, Geudens N, De Wever W, Verbeken EK, Van Raemdonck DE, Dupont LJ, Verleden GM (2008) A dichotomy in bronchiolitis obliterans syndrome after lung transplantation revealed by azithromycin therapy. Eur Respir J 32:832–843. doi:10.1183/09031936.00134307 PubMedGoogle Scholar
  260. 260.
    Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE (2006) Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 174:566–570. doi:10.1164/rccm.200601-071OC PubMedGoogle Scholar
  261. 261.
    Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, Mukae H, Tomono K, Kadota J, Kohno S (2003) Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol 285:L847–853. doi:10.1152/ajplung.00216.2002 PubMedGoogle Scholar
  262. 262.
    Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB (2003) Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 168:121–125. doi:10.1164/rccm.200212-1424BC PubMedGoogle Scholar
  263. 263.
    Sugiyama Y, Kudoh S, Maeda H (1990) Analysis of HLA antigens in patients with diffuse panbronchiolitis. Am Rev Respir Dis 141:1459–1462PubMedGoogle Scholar
  264. 264.
    Nagai H, Shishido H, Yoneda R (1991) Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration 58:145–149PubMedGoogle Scholar
  265. 265.
    Khalid M, Al Saghir A, Saleemi S, Al Dammas S, Zeitouni M, Al Mobeireek A, Chaudhry N, Sahovic E (2005) Azithromycin in bronchiolitis obliterans complicating bone marrow transplantation: a preliminary study. Eur Respir J 25:490–493. doi:10.1183/09031936.05.00020804 PubMedGoogle Scholar
  266. 266.
    Vos R, Vanaudenaerde BM, Ottevaere A, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, Wauters S, Van Raemdonck DE, Nawrot TS, Dupont LJ, Verleden GM (2010) Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer? Heart Lung Transplant 29:1358–1368. doi:10.1016/j.healun.2010.05.023 Google Scholar
  267. 267.
    Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M (1998) Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 157(6 Pt 1):1829–1832PubMedGoogle Scholar
  268. 268.
    Belser JA, Zeng H, Katz JM, Tumpey TM (2011) Infection with highly pathogenic H7 influenza viruses results in an attenuated proinflammatory cytokine and chemokine response early after infection. J Infect Dis 203:40–48. doi:10.1093/infdis/jiq018 PubMedGoogle Scholar
  269. 269.
    Maines TR, Szretter KJ, Perrone L, Belser JA, Bright RA, Zeng H, Tumpey TM, Katz JM (2008) Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response. Immunol Rev 225:68–84. doi:10.1111/j.1600-065X.2008.00690.x PubMedGoogle Scholar
  270. 270.
    Us D (2008) Cytokine storm in avian influenza. Mikrobiyol Bul 42:365–380PubMedGoogle Scholar
  271. 271.
    Woo PC, Tung ET, Chan KH, Lau CC, Lau SK, Yuen KY (2010) Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus: implications for treatment strategies. J Infect Dis 201:346–353. doi:10.1086/649785 PubMedGoogle Scholar
  272. 272.
    Lee SM, Gardy JL, Cheung CY, Cheung TK, Hui KP, Ip NY, Guan Y, Hancock RE, Peiris JS (2009) Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages. PLoS One 4(12):e8072. doi:10.1371/journal.pone.0008072 PubMedGoogle Scholar
  273. 273.
    Zhang C, Xu Y, Jia L, Yang Y, Wang Y, Sun Y, Huang L, Qiao F, Tomlinson S, Liu X, Zhou Y, Song H (2010) A new therapeutic strategy for lung tissue injury induced by influenza with CR2 targeting complement inhibitor. Virol J 7:30. doi:10.1186/1743-422X-7-30 PubMedGoogle Scholar
  274. 274.
    Shishkina LN, Nebol’sin VE, Skarnovich MO, Kabanov AS, Sergeev AA, Erdyneeva UB, Serova OA, Demina OK, Agafonov AP, Stavskiĭ EA, Drozdov IG (2010) In vivo efficacy of Ingavirin against pandemic A (H1N1/09)v influenza virus. Antibiot Khimioter 55:32–35PubMedGoogle Scholar
  275. 275.
    Bermejo-Martin JF, Kelvin DJ, Eiros JM, Castrodeza J, Ortiz de Lejarazu R (2009) Macrolides for the treatment of severe respiratory illness caused by novel H1N1 swine influenza viral strains. J Infect Dev Ctries 3(3):159–161PubMedGoogle Scholar
  276. 276.
    Miyamoto D, Hasegawa S, Sriwilaijaroen N, Yingsakmongkon S, Hiramatsu H, Takahashi T, Hidari K, Guo CT, Sakano Y, Suzuki T, Suzuki Y (2008) Clarithromycin inhibits progeny virus production from human influenza virus-infected host cells. Biol Pharm Bull 31(2):217–222PubMedGoogle Scholar
  277. 277.
    Zhirnov O, Klenk HD (2003) Human influenza A viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells. Virology 313(1):198–212PubMedGoogle Scholar
  278. 278.
    Targowski T, Jahnz-Rózyk K (2010) The role of macrolides in treatment of exacerbations of chronic obstructive pulmonary disease. Pol Merkur Lekarski 28(166):311–314PubMedGoogle Scholar
  279. 279.
    De Souza-Galvao ML, Martínez-García MA, Sanz F, Blanquer J (2010) Hot topics respiratory infections. Arch Bronconeumo l46 Suppl 1:8–12. doi: 10.1016/S0300-2896(10)70003-X
  280. 280.
    Burgel PR (2006) Antibiotics for acute exacerbations of chronic obstructive pulmonary disease (COPD). Med Mal Infect 36:706–717. doi:10.1016/j.medmal.2006.05.011 PubMedGoogle Scholar
  281. 281.
    Beigelman A, Mikols CL, Gunsten SP, Cannon CL, Brody SL, Walter MJ (2010) Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir Res 11:90. doi:10.1186/1465-9921-11-90 PubMedGoogle Scholar
  282. 282.
    Tahan F, Ozcan A, Koc N (2007) Clarithromycin in the treatment of RSV bronchiolitis: a double-blind, randomised, placebo-controlled trial. Eur Respir J 29:91–97. doi:10.1183/09031936.00029206 PubMedGoogle Scholar
  283. 283.
    Viasus D, Paño-Pardo JR, Cordero E, Campins A, López-Medrano F, Villoslada A, Fariñas MC, Moreno A, Rodríguez-Baño J, Oteo JA, Martínez-Montauti J, Torre-Cisneros J, Segura F, Carratalà J, Novel Influenza A (H1N1) Study Group, Spanish Network for Research in Infectious Diseases (2011) Effect of immunomodulatory therapies in patients with pandemic influenza A (H1N1) 2009 complicated by pneumonia. J Infect 62:193–199. doi:10.1016/j.jinf.2011.01.014 PubMedGoogle Scholar
  284. 284.
    Ichikawa Y, Ninomiya H, Katsuki M, Hotta M, Tanaka M, Oizumi K (1993) Low-dose/long-term erythromycin for treatment of bronchiolitis obliterans organizing pneumonia (BOOP). Kurume Med J 40:65–67PubMedGoogle Scholar
  285. 285.
    Stover DE, Mangino D (2005) Macrolides: a treatment alternative for bronchiolitis obliterans organizing pneumonia. Chest 128:3611–3617. doi:10.1378/chest.128.5.3611 PubMedGoogle Scholar
  286. 286.
    Radzikowska E, Wiatr E, Gawryluk D, Langfort R, Bestry I, Chabowski M, Roszkowski K (2008) Organizing pneumonia–clarithromycin treatment. Pneumonol Alergol Pol 76:334–339PubMedGoogle Scholar
  287. 287.
    Chang J, Han J, Kim D, Lee I, Lee KY, Jung S, Han HS, Chun BK, Cho SJ, Lee K, Lim BJ, Shin DH (2002) Bronchiolitis obliterans organizing pneumonia: clinicopathologic review of a series of 45 Korean patients including rapidly progressive form. J Korean Med Sci 17:179–186PubMedGoogle Scholar
  288. 288.
    Purcell IF, Bourke SJ, Marshall SM (1997) Cyclophosphamide in severe steroid-resistant bronchiolitis obliterans organizing pneumonia. Respir Med 91:175–177PubMedGoogle Scholar
  289. 289.
    Koinuma D, Miki M, Ebina M, Tahara M, Hagiwara K, Kondo T, Taguchi Y, Nukiwa T (2002) Successful treatment of a case with rapidly progressive bronchiolitis obliterans organizing pneumonia (BOOP) using cyclosporin A and corticosteroid. Intern Med 41:26–29PubMedGoogle Scholar
  290. 290.
    Kobayashi I, Yamada M, Takahashi Y, Kawamura N, Okano M, Sakiyama Y, Kobayashi K (2003) Interstitial lung disease associated with juvenile dermatomyositis: clinical features and efficacy of cyclosporin A. Rheumatology 42:371–374. doi:10.1093/rheumatology/keg040 PubMedGoogle Scholar
  291. 291.
    Radzikowska E, Wiatr E, Langfort R, Bestry I, Rudziński P, Roszkowski K (2004) Organizing pneumonia—own experiences with clarithromycin treatment. Pneumonol Alergol Pol 72:493–498PubMedGoogle Scholar
  292. 292.
    Lee J, Cha SI, Park TI, Park JY, Jung TH, Kim CH (2011) Adjunctive effects of cyclosporine and macrolide in rapidly progressive cryptogenic organizing pneumonia with no prompt response to steroid. Intern Med 50:475–479PubMedGoogle Scholar
  293. 293.
    King TE Jr, Mortenson RL (1992) Cryptogenic organizing pneumonitis. The North American experience. Chest 102:8S–13S. doi:10.1378/chest.102.1_Supplement.8S PubMedGoogle Scholar
  294. 294.
    Periti P, Mazzei T, Mini E (2003) Adverse effects of macrolide antibacterials. Drug Saf 9:346–364Google Scholar
  295. 295.
    Brown BA, Griffith DE, Girard W, Levin J, Wallace RJ Jr (1997) Relationship of adverse events to serum drug levels in patients receiving high-dose azithromycin for mycobacterial lung disease. Clin Infect Dis 24(5):958–964. doi:10.2307/4459965 PubMedGoogle Scholar
  296. 296.
    Brummett RE, Fox KE (1989) Vancomycin- and erythromycin-induced hearing loss in humans. Antimicrob Agents Chemother 33(6):791–796PubMedGoogle Scholar
  297. 297.
    Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT, Onyi GO, Steingrube VA, Mazurek GH (1994) Initial clarithromycin monotherapy for Mycobacterium avium-intracellulare complex lung disease. Am J Respir Crit Care Med 149(5):1335–1341PubMedGoogle Scholar
  298. 298.
    Wallace RJ Jr, Brown BA, Griffith DE (1993) Drug intolerance to high-dose clarithromycin among elderly patients. Diagn Microbiol Infect Dis 16(3):215–221PubMedGoogle Scholar
  299. 299.
    Foulds G, Shepard RM, Johnson RB (1990) The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother 25 Suppl A:73–82Google Scholar
  300. 300.
    Schentag JJ, Ballow CH (1991) Tissue-directed pharmacokinetics. Am J Med 91(3A):5S–11SGoogle Scholar
  301. 301.
    Luke DR, Foulds G, Cuddigan M, et al (1995) Azithromycin safety, toleration, and pharmacokinetics after intravenous administration [abstract no A27]. In: Program and abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (San Francisco). American Society for Microbiology, Washington, DCGoogle Scholar
  302. 302.
    Brown BA, Wallace RJ Jr, Griffith DE, Girard W (1995) Clarithromycin-induced hepatoxicity [letter]. Clin Infect Dis 20:1073–1074PubMedGoogle Scholar
  303. 303.
    Volberg WA, Koci BJ, Su W (2002) Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther 302:320–327PubMedGoogle Scholar
  304. 304.
    Dautzenberg B, Saint Marc T, Meyohas MC, Eliaszewitch M, Haniez F, Rogues AM, De Wit S, Cotte L, Chauvin JP, Grosset J (1993) Clarithromycin and other antimicrobial agents in the treatment of disseminated Mycobacterium avium infections in patients with acquired immunodeficiency syndrome. Arch Intern Med 153(3):368–372PubMedGoogle Scholar
  305. 305.
    Chaisson RE, Benson C, Dube M, KorvickJ, Wu A, Lichter S, Dellerson M, Smith T, Sattler F (1992) Clarithromycin therapy for disseminated Mycobacterium avium-complex (MAC) in AIDS (abstract). The 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy. Annual Meeting of the American Society for Microbiology, Anaheim, CAGoogle Scholar
  306. 306.
    Sacristán JA, Soto JA, de Cos MA (1993) Erythromycin-induced hypoacusis: 11 new cases and literature review. Ann Pharmacother 27(7–8):950–955PubMedGoogle Scholar
  307. 307.
    Haydon RC, Thelin JW, Davis WE (1984) Erythromycin ototoxicity: analysis and conclusions based on 22 case reports. Otolaryngol Head Neck Surg 92(6):678–684PubMedGoogle Scholar
  308. 308.
    Principi N, Esposito S (1999) Comparative tolerability of erythromycin and newer macrolide antibacterials in paediatric patients. Drug Saf 20:25–41PubMedGoogle Scholar
  309. 309.
    Wallace MR, Miller LK, Nguyen MT (1994) Ototoxicity with azithromycin. Lancet 343:241PubMedGoogle Scholar
  310. 310.
    Ray WA, Murray KT, Meredith S (2004) Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med 351:1089–1096. doi:10.1056/NEJMoa040582 PubMedGoogle Scholar
  311. 311.
    Owens RC Jr, Nolin TD (2006) Antimicrobial-associated QT interval prolongation: points of interest. Clin Infect Dis 43:1603–1611. doi:10.1086/508873 PubMedGoogle Scholar
  312. 312.
    Paran Y, Mashav N, Henis O (2008) Drug-induced torsades de pointes in patients aged 80 years or more. Anadolu Kardiyol Derg 8:260–265PubMedGoogle Scholar
  313. 313.
    Shaffer D, Singer S, Korvick J (2002) Concomitant risk factors in reports of torsades de pointes associated with macrolide use: review of the United States Food and Drug Administration Adverse Event Reporting System. Clin Infect Dis 35:197–200. doi:10.2307/4462038 PubMedGoogle Scholar
  314. 314.
    Eady EA, Ross JI, Cove JH, Holland KT, Cunliffe WJ (1989) Macrolide-lincosamide-streptogramin B (MLS) resistance in cutaneous propionibacteria: definition of phenotypes. J Antimicrob Chemother 23(4):493–502. doi:10.1093/jac/23.4.493 PubMedGoogle Scholar
  315. 315.
    Bejuk D (2004) Differentiation of resistance phenotypes among erythromycin-resistant streptococci. Acta Med Croatica 58(4):301–306PubMedGoogle Scholar
  316. 316.
    Tunçkanat F, Arikan S (2000) Phenotypes of staphylococcal resistance to macrolides, lincosamides and streptogramin B (MLS) in a Turkish university hospital. Zentralbl Bakteriol 289(8):827–833. doi:10.1016/S1684-1182(10)60081-3 PubMedGoogle Scholar
  317. 317.
    Portillo A, Lantero M, Olarte I, Ruiz-Larrea F, Torres C (2001) MLS resistance phenotypes and mechanisms in beta-haemolytic group B, C and G Streptococcus isolates in La Rioja, Spain. J Antimicrob Chemother 47(1):115–116. doi:10.1093/jac/47.1.115 PubMedGoogle Scholar
  318. 318.
    Berg HF, Tjhie JH, Scheffer GJ, Peeters MF, van Keulen PH, Kluytmans JA, Stobberingh EE (2004) Emergence and persistence of macrolide resistance in oropharyngeal flora and elimination of nasal carriage of Staphylococcus aureus after therapy with slow-release clarithromycin: a randomized, double-blind, placebo-controlled study. Antimicrob Agents Chemother 48(11):4183–4188. doi:10.1128/AAC.48.11.4183-4188.2004 PubMedGoogle Scholar
  319. 319.
    Tateda K, Ishii Y, Kimura S (2007) Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery? J Infect Chemother 13:357–367. doi:10.1007/s10156-007-0555-2 PubMedGoogle Scholar
  320. 320.
    Cazalis J, Tanabe S, Gagnon G, Sorsa T, Grenier D (2009) Tetracyclines and chemically modified tetracycline-3 (CMT-3) modulate cytokine secretion by lipopolysaccharide-stimulated whole blood. Inflammation 32(2):130–137. doi:10.1007/s10753-009-9111-9 PubMedGoogle Scholar
  321. 321.
    Golub LM, Suomalainen K, Sorsa T (1992) Host modulation with tetracyclines and their chemically modified analogues. Curr Opin Dent 2:80–90PubMedGoogle Scholar
  322. 322.
    Maisi P, Kiili M, Raulo SM, Pirilä E, Sorsa T (1999) MMP inhibition by chemically modified tetracycline-3 (CMT-3) in equine pulmonary epithelial lining fluid. Ann N Y Acad Sci 878:675–677. doi:10.1111/j.1749-6632.1999.tb07759.x PubMedGoogle Scholar
  323. 323.
    Maitra SR, Bhaduri S, Chen E, Shapiro MJ (2004) Role of chemically modified tetracycline on TNF-alpha and mitogen-activated protein kinases in sepsis. Shock 22(5):478–481PubMedGoogle Scholar
  324. 324.
    Steinberg J, Halter J, Schiller H, Gatto L, Carney D, Lee HM, Golub L, Nieman G (2005) Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model. Shock 24(4):348–356PubMedGoogle Scholar
  325. 325.
    Reisz G, Pingleton SK, Melethil S, Ryan PB (1983) The effect of erythromycin on theophylline pharmacokinetics in chronic bronchitis. Am Rev Respir Dis 127:581–584PubMedGoogle Scholar
  326. 326.
    Bachmann K, Jauregui L, Sides G, Sullivan TJ (1993) Steady-state pharmacokinetics of theophylline in COPD patients treated with dirithromycin. J Clin Pharmacol 33:861–865PubMedGoogle Scholar
  327. 327.
    Cazzola M, Matera MG, Paternò E, Scaglione F, Santangelo G, Rossi F (1991) Impact of rokitamycin, a new 16-membered macrolide, on serum theophylline. J Chemother 3:240–244PubMedGoogle Scholar
  328. 328.
    Green JA, Clementi WA (1983) Decrease in theophylline clearance after the administration of erythromycin to a patient with obstructive lung disease. Drug Intell Clin Pharm 17:370–372PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. Zarogoulidis
    • 1
  • N. Papanas
    • 3
  • I. Kioumis
    • 1
  • E. Chatzaki
    • 4
  • E. Maltezos
    • 2
  • K. Zarogoulidis
    • 1
  1. 1.Pulmonary Department, “G. Papanikolaou” HospitalAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Unit of Infectious DiseasesUniversity Hospital of AlexandroupolisAlexandroupolisGreece
  3. 3.Second Department of Internal MedicineDemocritus University of ThraceAlexandroupolisGreece
  4. 4.Laboratory of Pharmacology, Medical SchoolDemocritus University of ThraceAlexandroupolisGreece

Personalised recommendations