European Journal of Clinical Pharmacology

, Volume 68, Issue 4, pp 397–406 | Cite as

Influence of sex on propofol metabolism, a pilot study: implications for propofol anesthesia

  • Irena Loryan
  • Marja Lindqvist
  • Inger Johansson
  • Masahiro Hiratsuka
  • Ilse van der Heiden
  • Ron HN van Schaik
  • Jan Jakobsson
  • Magnus Ingelman-SundbergEmail author
Pharmacokinetics and Disposition



The basis of high intersubject variability of propofol metabolism is unclear. Therefore, we examined the influence of genetic polymorphisms of the key metabolizing enzymes cytochrome P450 2B6 (CYP2B6) and uridine diphosphate (UDP)-glucuronosyltransferase 1A9 (UGT1A9), age, and sex on propofol biotransformation in vitro and in vivo.


Plasma concentrations of propofol, 4-hydroxypropofol, and their glucuronides were measured over 20 min in 105 patients after a single intravenous bolus of propofol. Propofol 4-hydroxylation activity, genotypes, and content of CYP2B6 protein in 68 human livers were determined. The common single nucleotide polymorphisms (SNPs) for the CYP2B6 and UGT1A9 genes were analyzed by polymerase chain reaction (PCR).


Plasma levels of propofol metabolites showed high interindividual variability (range of coefficient of variation 89–128%). This was supported by in vitro data showing similar variability of propofol 4-hydroxylation in liver microsomes and 1.9-fold higher CYP2B6 protein content in the livers from women. No significant relationships were revealed between the SNPs studied and propofol metabolism. However, patients’ sex had a pronounced effect on propofol metabolism. Thus, women had higher amounts of propofol glucuronide (1.25-fold; p = 0.03), 4-hydroxypropofol-1-glucuronide (2.1-fold; p = 0.0009), and 4-hydroxypropofol-4-glucuronide (1.7-fold; p = 0.02) as shown by the weight-corrected area under the time–plasma concentration curve of metabolites. Additionally, the sexual dimorphism in 4-hydroxypropofol glucuronidation was prominent in the 35- to 64-year-old subgroup.


No significant effects of CYP2B6 and UGT1A9 SNPs or age on propofol metabolism were revealed in this pilot study, but there was a pronounced effect of sex, a finding that indicates an important factor for the previously described sex difference in systemic clearance of propofol seen.


Propofol Anesthesia Metabolism Sex UGT1A9 CYP2B6 

Abbreviations list


Cytochrome P450 2B6


UDP-glucuronosyltransferase 1A9


Single nucleotide polymorphism


Propofol glucuronide






Sum of 4-hydroxypropofol-1-glucuronide and 4-hydroxyporpofol-4-glucuronide


4-hydroxypropofol (2,6-diisopropyl-1,4-quinol)


Human liver microsomes


Area under the time-plasma concentration curve measured over 20 min


American Society of Anesthesiologists



We thank Pharsight Corporation for approving the free Academic Research Node License for WinNonLin through the Pharsight Academic License program. This research was supported by grants from the Swedish Research Council and from Karolinska Institutet. We are indebted to Åsa Nordling for valuable aid in analyses of propofol metabolites.

Supplementary material

228_2011_1132_MOESM1_ESM.docx (13 kb)
Supplementary Material 1 (DOCX 13 kb)
228_2011_1132_MOESM2_ESM.docx (14 kb)
Supplementary Material 2 (DOCX 14 kb)
228_2011_1132_MOESM3_ESM.docx (18 kb)
Supplementary Material 3 (DOCX 18 kb)


  1. 1.
    Glen JB, Hunter SC (1984) Pharmacology of an emulsion formulation of ICI 35 868. Br J Anaesth 56(6):617–626PubMedCrossRefGoogle Scholar
  2. 2.
    Iohom G, Ni Chonghaile M, O'Brien JK, Cunningham AJ, Fitzgerald DF, Shields DC (2007) An investigation of potential genetic determinants of propofol requirements and recovery from anaesthesia. Eur J Anaesthesiol 24(11):912–919PubMedCrossRefGoogle Scholar
  3. 3.
    Hoymork SC, Raeder J (2005) Why do women wake up faster than men from propofol anaesthesia? Br J Anaesth 95(5):627–633PubMedCrossRefGoogle Scholar
  4. 4.
    Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M (1988) Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14 C-propofol. Xenobiotica 18(4):429–440PubMedCrossRefGoogle Scholar
  5. 5.
    Sneyd JR, Simons PJ, Wright B (1994) Use of proton nmr spectroscopy to measure propofol metabolites in the urine of the female Caucasian patient. Xenobiotica 24(10):1021–1028PubMedCrossRefGoogle Scholar
  6. 6.
    Favetta P, Degoute CS, Perdrix JP, Dufresne C, Boulieu R, Guitton J (2002) Propofol metabolites in man following propofol induction and maintenance. Br J Anaesth 88(5):653–658PubMedCrossRefGoogle Scholar
  7. 7.
    Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ (2001) Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94(1):110–119PubMedCrossRefGoogle Scholar
  8. 8.
    Oda Y, Hamaoka N, Hiroi T, Imaoka S, Hase I, Tanaka K, Funae Y, Ishizaki T, Asada A (2001) Involvement of human liver cytochrome P4502B6 in the metabolism of propofol. Br J Clin Pharmacol 51(3):281–285PubMedCrossRefGoogle Scholar
  9. 9.
    Al Koudsi N, Tyndale RF (2010) Hepatic CYP2B6 is altered by genetic, physiologic, and environmental factors but plays little role in nicotine metabolism. Xenobiotica 40(6):381–392. doi: 10.3109/00498251003713958 PubMedCrossRefGoogle Scholar
  10. 10.
    Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M (2007) Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 8(7):743–759PubMedCrossRefGoogle Scholar
  11. 11.
    Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE, Roots I, Brockmoller J (2003) Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 13(10):619–626PubMedCrossRefGoogle Scholar
  12. 12.
    Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 307(3):906–922PubMedCrossRefGoogle Scholar
  13. 13.
    Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol 400:104–116PubMedCrossRefGoogle Scholar
  14. 14.
    Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C (2004) Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14(8):501–515PubMedCrossRefGoogle Scholar
  15. 15.
    Ramirez J, Liu W, Mirkov S, Desai AA, Chen P, Das S, Innocenti F, Ratain MJ (2007) Lack of association between common polymorphisms in UGT1A9 and gene expression and activity. Drug Metab Dispos 35(12):2149–2153PubMedCrossRefGoogle Scholar
  16. 16.
    Haensch K, Schultz A, Krauss T, Grouven U, Schultz B (2009) Women need more propofol than men during EEG-monitored total intravenous anaesthesia / Frauen benotigen mehr Propofol als Manner wahrend EEG-uberwachter total-intravenoser Anasthesie. Biomed Tech (Berl) 54(2):76–82CrossRefGoogle Scholar
  17. 17.
    Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86(4):836–847PubMedCrossRefGoogle Scholar
  18. 18.
    Gan TJ, Glass PS, Sigl J, Sebel P, Payne F, Rosow C, Embree P (1999) Women emerge from general anesthesia with propofol/alfentanil/nitrous oxide faster than men. Anesthesiology 90(5):1283–1287PubMedCrossRefGoogle Scholar
  19. 19.
    Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88(5):1170–1182PubMedCrossRefGoogle Scholar
  20. 20.
    White M, Kenny GN, Schraag S (2008) Use of target controlled infusion to derive age and gender covariates for propofol clearance. Clin Pharmacokinet 47(2):119–127PubMedCrossRefGoogle Scholar
  21. 21.
    Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, Struys MM (2010) The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg 111(2):368–379PubMedCrossRefGoogle Scholar
  22. 22.
    Glen JB, Servin F (2009) Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth 102(5):626–632PubMedCrossRefGoogle Scholar
  23. 23.
    Vuyk J, Oostwouder CJ, Vletter AA, Burm AG, Bovill JG (2001) Gender differences in the pharmacokinetics of propofol in elderly patients during and after continuous infusion. Br J Anaesth 86(2):183–188PubMedCrossRefGoogle Scholar
  24. 24.
    Westlind-Johnsson A, Malmebo S, Johansson A, Otter C, Andersson TB, Johansson I, Edwards RJ, Boobis AR, Ingelman-Sundberg M (2003) Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 31(6):755–761PubMedCrossRefGoogle Scholar
  25. 25.
    Ghotbi R, Gomez A, Milani L, Tybring G, Syvanen AC, Bertilsson L, Ingelman-Sundberg M, Aklillu E (2009) Allele-specific expression and gene methylation in the control of CYP1A2 mRNA level in human livers. Pharmacogenomics J 9(3):208–217PubMedCrossRefGoogle Scholar
  26. 26.
    Court MH, Hay-Kraus BL, Hill DW, Kind AJ, Greenblatt DJ (1999) Propofol hydroxylation by dog liver microsomes: assay development and dog breed differences. Drug Metab Dispos 27(11):1293–1299PubMedGoogle Scholar
  27. 27.
    Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11(5):399–415PubMedCrossRefGoogle Scholar
  28. 28.
    van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, Budde K, Kuypers D, Le Meur Y, van der Werf M, Mamelok R, van Gelder T (2009) UGT1A9–275 T > A/-2152 C > T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 86(3):319–327PubMedCrossRefGoogle Scholar
  29. 29.
    Vree TB, Lagerwerf AJ, Bleeker CP, de Grood PM (1999) Direct high-performance liquid chromatography determination of propofol and its metabolite quinol with their glucuronide conjugates and preliminary pharmacokinetics in plasma and urine of man. J Chromatogr B Biomed Sci Appl 721(2):217–228PubMedCrossRefGoogle Scholar
  30. 30.
    Guitton J, Buronfosse T, Desage M, Flinois JP, Perdrix JP, Brazier JL, Beaune P (1998) Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth 80(6):788–795PubMedGoogle Scholar
  31. 31.
    Apfelbaum JL, Grasela TH, Hug CC Jr, McLeskey CH, Nahrwold ML, Roizen MF, Stanley TH, Thisted RA, Walawander CA, White PF (1993) The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: characteristics associated with prolonged time to awakening. Anesth Analg 77(4 Suppl):S10–S14PubMedGoogle Scholar
  32. 32.
    Zhu T, Pang Q, McCluskey SA, Luo C (2008) Effect of propofol on hepatic blood flow and oxygen balance in rabbits. Can J Anaesth 55(6):364–370PubMedCrossRefGoogle Scholar
  33. 33.
    Richards MJ, Skues MA, Jarvis AP, Prys-Roberts C (1990) Total i.v. anaesthesia with propofol and alfentanil: dose requirements for propofol and the effect of premedication with clonidine. Br J Anaesth 65(2):157–163PubMedCrossRefGoogle Scholar
  34. 34.
    Hernandez JP, Mota LC, Huang W, Moore DD, Baldwin WS (2009) Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 256(1–2):53–64PubMedCrossRefGoogle Scholar
  35. 35.
    Buckley DB, Klaassen CD (2009) Mechanism of gender-divergent UDP-glucuronosyltransferase mRNA expression in mouse liver and kidney. Drug Metab Dispos 37(4):834–840PubMedCrossRefGoogle Scholar
  36. 36.
    Scandlyn MJ, Stuart EC, Rosengren RJ (2008) Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol 4(4):413–424PubMedCrossRefGoogle Scholar
  37. 37.
    Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res 20 (8):1020–1036Google Scholar
  38. 38.
    Liu HF, Vincent-Viry M, Galteau MM, Gueguen R, Magdalou J, Nicolas A, Leroy P, Siest G (1991) Urinary glucuronide excretion of fenofibric and clofibric acid glucuronides in man. Is it polymorphic? Eur J Clin Pharmacol 41(2):153–159PubMedCrossRefGoogle Scholar
  39. 39.
    Court MH, Hao Q, Krishnaswamy S, Bekaii-Saab T, Al-Rohaimi A, von Moltke LL, Greenblatt DJ (2004) UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver. J Pharmacol Exp Ther 310(2):656–665PubMedCrossRefGoogle Scholar
  40. 40.
    Miners JO, Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51(3):347–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Irena Loryan
    • 1
  • Marja Lindqvist
    • 1
  • Inger Johansson
    • 1
  • Masahiro Hiratsuka
    • 1
    • 3
  • Ilse van der Heiden
    • 2
  • Ron HN van Schaik
    • 2
  • Jan Jakobsson
    • 1
  • Magnus Ingelman-Sundberg
    • 1
    Email author
  1. 1.Section of Pharmacogenetics, Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
  2. 2.Department of Clinical ChemistryErasmus MC RotterdamRotterdamThe Netherlands
  3. 3.Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan

Personalised recommendations