European Journal of Clinical Pharmacology

, Volume 67, Issue 11, pp 1147–1157 | Cite as

BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors

  • Caterina Chianella
  • Daniela Gragnaniello
  • Pierpaolo Maisano Delser
  • Maria Francesca Visentini
  • Elisabetta Sette
  • Maria Rosaria Tola
  • Guido Barbujani
  • Silvia Fuselli



Cholinesterase inhibitors are commonly prescribed to patients with Alzheimer’s disease (AD) to enhance cholinergic neurotransmission. Differential response to these treatments has been observed, and claims have been made that individual genetic variants may influence the pharmacokinetic and pharmacodynamic properties of these drugs. Here we assess the effects of genetic variation at two loci involved in the activity of cholinesterase inhibitors on longitudinal clinical change in AD patients being treated with donepezil, galantamine, and rivastigmine.


This was an open study in which 171 Italian AD patients treated with donepezil (n = 92), galantamine (n = 33), or rivastigmine (n = 46) were enrolled. Response to treatment was quantified by grading the patient’s cognitive state (Mini-Mental State Examination) and the patient’s ability to perform normal daily activities (Activities of Daily Living, Instrumental Activities of Daily Living) at baseline and after 6 and 12 months of treatment. Genetic variation was comprehensively characterized and analyzed at two loci: CYP2D6, which is involved in donepezil and galantamine metabolism, and BCHE, which codes for an enzyme (butyrylcholinesterase) which is both target and metabolizer of rivastigmine. APOE (coding for apolipoprotein E), which is associated with the risk of AD and inefficacy of specific AD treatments, was genotyped to control for patient stratification. The influence of the CYP2D6 and BCHE genotype on clinical changes after 12 months was evaluated by several tests of association.


After 1 year of treatment, 29, 12, and 12 of the patients receiving donepezil, galantamine, and rivastigmine, respectively, showed a cognitive decrement, while eight patients interrupted the therapy before 12 months of treatment. No significant differences between the three treatments were observed in terms of response and tolerability. Non-responders show a higher proportion of BCHE and CYP2D6 mutated alleles, but genetic variation at the two loci was not a reliable predictor of clinical changes in AD patients treated with cholinesterase inhibitors.


Individualized therapy based on CYP2D6 and BCHE genotypes is unlikely to be beneficial for treating Alzheimer’s disease patients in routine clinical practice.


pharmacogenetics Alzheimer CYP2D6 BCHE cholinesterase inhibitors 



We gratefully thank Johanna Sistonen for helping with the CYP2D6 genotyping, Sara Raimondi and Giorgio Bertorelle for useful suggestions on data analysis, and Krisztina Vasarhelyi for language revision.


  1. 1.
    Jonsson L, Wimo A (2009) The cost of dementia in Europe: a review of the evidence, and methodological considerations. Pharmacoeconomics 27:391–403PubMedCrossRefGoogle Scholar
  2. 2.
    Dementia in Europe: Yearbook 2006 (2006). Alzheimer Europe. Available at:
  3. 3.
    Waldemar G, Dubois B, Emre M, Georges J, McKeith IG, Rossor M, Scheltens P, Tariska P, Winblad B (2007) Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol 14:e1–e26PubMedCrossRefGoogle Scholar
  4. 4.
    Rabins PV, Blacker D, Rovner BW, Rummans T, Schneider LS, Tariot PN, Blass DM, McIntyre JS, Charles SC, Anzia DJ, Cook IA, Finnerty MT, Johnson BR, Nininger JE, Schneidman B, Summergrad P, Woods SM, Berger J, Cross CD, Brandt HA, Margolis PM, Shemo JP, Blinder BJ, Duncan DL, Barnovitz MA, Carino AJ, Freyberg ZZ, Gray SH, Tonnu T, Kunkle R, Albert AB, Craig TJ, Regier DA, Fochtmann LJ (2007) American Psychiatric Association practice guideline for the treatment of patients with Alzheimer’s disease and other dementias. Second edition. Am J Psychiatry 164:5–56PubMedGoogle Scholar
  5. 5.
    Ballard CG (2002) Advances in the treatment of Alzheimer’s disease: benefits of dual cholinesterase inhibition. Eur Neurol 47:64–70PubMedCrossRefGoogle Scholar
  6. 6.
    Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739PubMedCrossRefGoogle Scholar
  7. 7.
    Cacabelos R, Llovo R, Fraile C, Fernandez-Novoa L (2007) Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res 4:479–500PubMedCrossRefGoogle Scholar
  8. 8.
    Varsaldi F, Miglio G, Scordo MG, Dahl ML, Villa LM, Biolcati A, Lombardi G (2006) Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol 62:721–726PubMedCrossRefGoogle Scholar
  9. 9.
    Scacchi R, Gambina G, Moretto G, Corbo RM (2009) Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet 150B:502–507PubMedCrossRefGoogle Scholar
  10. 10.
    Pilotto A, Franceschi M, D’Onofrio G, Bizzarro A, Mangialasche F, Cascavilla L, Paris F, Matera MG, Pilotto A, Daniele A, Mecocci P, Masullo C, Dallapiccola B, Seripa D (2009) Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology 73:761–767PubMedCrossRefGoogle Scholar
  11. 11.
    Seripa D, Bizzarro A, Pilotto A, D’Onofrio G, Vecchione G, Gallo AP, Cascavilla L, Paris F, Grandone E, Mecocci P, Santini SA, Masullo C (2011) Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics 21(4):225–320Google Scholar
  12. 12.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944PubMedGoogle Scholar
  13. 13.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  14. 14.
    Magni E, Binetti G, Bianchetti A, Rozzini R, Trabucchi M (1996) Mini-mental State Examination: a normative study in Italian elderly population. Eur J Neurol 3:1–5CrossRefGoogle Scholar
  15. 15.
    Flockhart D (2007) Drug interactions: cytochrome P450 drug interaction table. Available at: Indiana University School of Medicine, version 5.0 released on 12 Jan 2009
  16. 16.
    Katz S (1983) Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. J Am Geriatr Soc 31:721–727PubMedGoogle Scholar
  17. 17.
    Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186PubMedCrossRefGoogle Scholar
  18. 18.
    Schipper HM (2011) Apolipoprotein E: implications for AD neurobiology, epidemiology and risk assessment. Neurobiol Aging 32(5):778–790Google Scholar
  19. 19.
    Sistonen J, Fuselli S, Levo A, Sajantila A (2005) CYP2D6 genotyping by a multiplex primer extension reaction. Clin Chem 51:1291–1295PubMedCrossRefGoogle Scholar
  20. 20.
    Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A (2003) Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int 135:9–15PubMedCrossRefGoogle Scholar
  21. 21.
    Koch W, Ehrenhaft A, Griesser K, Pfeufer A, Muller J, Schomig A, Kastrati A (2002) TaqMan systems for genotyping of disease-related polymorphisms present in the gene encoding apolipoprotein E. Clin Chem Lab Med 40:1123–1131PubMedCrossRefGoogle Scholar
  22. 22.
    Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  23. 23.
    Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83:234–242PubMedCrossRefGoogle Scholar
  24. 24.
    Bartels CF, Jensen FS, Lockridge O, van der Spek AF, Rubinstein HM, Lubrano T, La Du BN (1992) DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet 50:1086–1103PubMedGoogle Scholar
  25. 25.
    Podoly E, Shalev DE, Shenhar-Tsarfaty S, Bennett ER, Ben Assayag E, Wilgus H, Livnah O, Soreq H (2009) The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem 284:17170–17179PubMedCrossRefGoogle Scholar
  26. 26.
    Tasker A, Ballard CG, Joachim C, Warden DR, Okello EJ, Perry RH, Khan N, Smith AD, Lehmann DJ, Perry EK (2008) Butyrylcholinesterase K variant associated with higher enzyme activity in the temporal cortex of elderly patients. Neurosci Lett 442:297–299PubMedCrossRefGoogle Scholar
  27. 27.
    StatSoft (2005) STATISTICA ver. 7.1. Available at: StatSoft.Italia_srl
  28. 28.
    Aguglia E, Onor ML, Saina M, Maso E (2004) An open-label, comparative study of rivastigmine, donepezil and galantamine in a real-world setting. Curr Med Res Opin 20:1747–1752PubMedCrossRefGoogle Scholar
  29. 29.
    Patterson CE, Todd SA, Passmore AP (2010) Effect of apolipoprotein E and butyrylcholinesterase genotypes on cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer’s disease. Pharmacogenomics J. doi: 10.1038/tpj.2010.61
  30. 30.
    Bullock R, Bergman H, Touchon J, Gambina G, He Y, Nagel J, Lane R (2006) Effect of age on response to rivastigmine or donepezil in patients with Alzheimer’s disease. Curr Med Res Opin 22:483–494PubMedCrossRefGoogle Scholar
  31. 31.
    Fuselli S, Dupanloup I, Frigato E, Cruciani F, Scozzari R, Moral P, Sistonen J, Sajantila A, Barbujani G (2004) Molecular diversity at the CYP2D6 locus in the Mediterranean region. Eur J Hum Genet 12:916–924PubMedCrossRefGoogle Scholar
  32. 32.
    Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A (2009) Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 19:170–179PubMedCrossRefGoogle Scholar
  33. 33.
    O’Brien KK, Saxby BK, Ballard CG, Grace J, Harrington F, Ford GA, O’Brien JT, Swan AG, Fairbairn AF, Wesnes K, del Ser T, Edwardson JA, Morris CM, McKeith IG (2003) Regulation of attention and response to therapy in dementia by butyrylcholinesterase. Pharmacogenetics 13:231–239PubMedCrossRefGoogle Scholar
  34. 34.
    Blesa R, Bullock R, He Y, Bergman H, Gambina G, Meyer J, Rapatz G, Nagel J, Lane R (2006) Effect of butyrylcholinesterase genotype on the response to rivastigmine or donepezil in younger patients with Alzheimer’s disease. Pharmacogenet Genomics 16:771–774PubMedCrossRefGoogle Scholar
  35. 35.
    Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn-Schmiedebergs Arch Pharmacol 369:23–37PubMedCrossRefGoogle Scholar
  36. 36.
    Gaedigk A, Ryder DL, Bradford LD, Leeder JS (2003) CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584 G promoter polymorphism. Clin Chem 49:1008–1011PubMedCrossRefGoogle Scholar
  37. 37.
    Raimundo S, Toscano C, Klein K, Fischer J, Griese EU, Eichelbaum M, Schwab M, Zanger UM (2004) A novel intronic mutation, 2988G > A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 76:128–138PubMedCrossRefGoogle Scholar
  38. 38.
    Rodriguez-Antona C, Gurwitz D, de Leon J, Llerena A, Kirchheiner J, de Mesa EG, Ibarreta D (2009) CYP2D6 genotyping for psychiatric patients treated with risperidone: considerations for cost-effectiveness studies. Pharmacogenomics 10:685–699. doi: 10.2217/pgs.09.15 PubMedCrossRefGoogle Scholar
  39. 39.
    Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6:246–254PubMedGoogle Scholar
  40. 40.
    Borroni B, Colciaghi F, Pastorino L, Archetti S, Corsini P, Cattabeni F, Di Luca M, Padovani A (2002) ApoE genotype influences the biological effect of donepezil on APP metabolism in Alzheimer disease: evidence from a peripheral model. Eur Neuropsychopharmacol 12:195–200PubMedCrossRefGoogle Scholar
  41. 41.
    Poirier J, Delisle MC, Quirion R, Aubert I, Farlow M, Lahiri D, Hui S, Bertrand P, Nalbantoglu J, Gilfix BM, Gauthier S (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 92:12260–12264PubMedCrossRefGoogle Scholar
  42. 42.
    Farlow MR, Lahiri DK, Poirier J, Davignon J, Schneider L, Hui SL (1998) Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer’s disease. Neurology 50:669–677PubMedGoogle Scholar
  43. 43.
    Aerssens J, Raeymaekers P, Lilienfeld S, Geerts H, Konings F, Parys W (2001) APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 12:69–77PubMedCrossRefGoogle Scholar
  44. 44.
    Rigaud AS, Traykov L, Latour F, Couderc R, Moulin F, Forette F (2002) Presence or absence of at least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer’s disease. Pharmacogenetics 12:415–420PubMedCrossRefGoogle Scholar
  45. 45.
    Farlow MR (2003) Clinical pharmacokinetics of galantamine. Clin Pharmacokinet 42:1383–1392PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Caterina Chianella
    • 1
  • Daniela Gragnaniello
    • 2
  • Pierpaolo Maisano Delser
    • 1
    • 3
  • Maria Francesca Visentini
    • 1
    • 4
  • Elisabetta Sette
    • 2
  • Maria Rosaria Tola
    • 2
  • Guido Barbujani
    • 1
  • Silvia Fuselli
    • 1
  1. 1.Department of Biology and EvolutionUniversity of FerraraFerraraItaly
  2. 2.Unità operativa di Neurologia, Dipartimento di Neuroscienze e riabilitazione Azienda Ospedale–Università S. AnnaFerraraItaly
  3. 3.Department of GeneticsUniversity of LeicesterLeicesterUK
  4. 4.NGB Genetics SrlBolognaItaly

Personalised recommendations