European Journal of Clinical Pharmacology

, Volume 66, Issue 12, pp 1199–1205 | Cite as

Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations

  • Rasmus S. PedersenEmail author
  • Charlotte Brasch-Andersen
  • Sarah C. Sim
  • Troels K. Bergmann
  • Jónrit Halling
  • Maria S. Petersen
  • Pál Weihe
  • Hege Edvardsen
  • Vessela N. Kristensen
  • Kim Brøsen
  • Magnus Ingelman-Sundberg



To determine the distribution of clinically important CYP2C genotypes and allele frequencies in healthy Nordic populations with special focus on linkage disequilibrium.


A total of 896 healthy subjects from three Nordic populations (Danish, Faroese, and Norwegian) were genotyped for five frequent and clinically important CYP2C allelic variants: the defective CYP2C8*3, CYP2C9*2, CYP2C9*3, and CYP2C19*2 alleles, and the CYP2C19*17 allele that causes rapid drug metabolism. Linkage disequilibrium was evaluated and CYP2C haplotypes were inferred in the entire population.


Ten CYP2C haplotypes were inferred, the most frequent of which (49%) was the CYP2C wildtype haplotype carrying CYP2C8*1, CYP2C9*1, and CYP2C19*1. The second most frequent haplotype (19%) is composed of CYP2C19*17, CYP2C8*1, and CYP2C9*1. This predicted haplotype accounts for 99.7% of the CYP2C19*17 alleles found in the 896 subjects.


CYP2C19*17 is a frequent genetic variant in Nordic populations that exists in strong linkage disequilibrium with wildtype CYP2C8*1 and CYP2C9*1 alleles, which effectively makes it a determinant for a haplotype exhibiting an efficient CYP2C substrate metabolism.


CYP2C haplotypes CYP2C19*17 Linkage disequilibrium Allele frequencies 



This research was supported in part by grants from The Swedish Research Council, Torsten and Ragnar Söderbergs Stiftelser, Karolinska Institutet, The Danish Research Council for Health and Disease, and The Lundbeck Foundation. We thank Pernille Jordan for analytical expertise.


  1. 1.
    Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:89–104CrossRefPubMedGoogle Scholar
  2. 2.
    Niwa T, Murayama N, Yamazaki H (2009) Oxidation of endobiotics mediated by xenobiotic-metabolizing forms of human cytochrome P450. Curr Drug Metab 10:700–712CrossRefPubMedGoogle Scholar
  3. 3.
    Goldstein JA, de Morais SM (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4:285–299CrossRefPubMedGoogle Scholar
  4. 4.
    Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52:349–355CrossRefPubMedGoogle Scholar
  5. 5.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526CrossRefPubMedGoogle Scholar
  6. 6.
    Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA (1991) Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30:3247–3255CrossRefPubMedGoogle Scholar
  7. 7.
    Totah RA, Rettie AE (2005) Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 77:341–352CrossRefPubMedGoogle Scholar
  8. 8.
  9. 9.
    Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11:597–607CrossRefPubMedGoogle Scholar
  10. 10.
    Bergmann TK, Vach W, Gréen H, Karlsson MO, Friberg L, Nielsen F, Pedersen RS, Mirza MR, Brasch-Andersen C, Brosen K (2010) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J doi: 10.1038/tpj.2010.19 PubMedGoogle Scholar
  11. 11.
    Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538CrossRefPubMedGoogle Scholar
  12. 12.
  13. 13.
    King BP, Khan TI, Aithal GP, Kamali F, Daly AK (2004) Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics 14:813–822CrossRefPubMedGoogle Scholar
  14. 14.
    Pedersen RS, Verstuyft C, Becquemont L, Jaillon P, Brøsen K (2004) Cytochrome P4502C9 (CYP2C9) genotypes in a Nordic population in Denmark. Basic Clin Pharmacol Toxicol 94:151–152CrossRefPubMedGoogle Scholar
  15. 15.
  16. 16.
    Wilkinson GR, Guengerich FP, Branch RA (1989) Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol Ther 43:53–76CrossRefPubMedGoogle Scholar
  17. 17.
    De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422PubMedGoogle Scholar
  18. 18.
    Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113CrossRefPubMedGoogle Scholar
  19. 19.
    Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E, Bertilsson L (2008) Increased omeprazole metabolism in carriers of the CYP2C19*17 allele: a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 65:767–774CrossRefPubMedGoogle Scholar
  20. 20.
    Ohlsson Rosenborg S, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC, Bertilsson L, Ingelman-Sundberg M, Eliasson E (2008) Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol 64:1175–1179CrossRefPubMedGoogle Scholar
  21. 21.
    Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, Morath T, Schömig A, von Beckerath N, Kastrati A (2010) Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121:512–518CrossRefPubMedGoogle Scholar
  22. 22.
    Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E (2008) Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 83:322–327CrossRefPubMedGoogle Scholar
  23. 23.
    Ahmadi KR, Weale ME, Xue ZY, Soranzo N, Yarnall DP, Briley JD, Maruyama Y, Kobayashi M, Wood NW, Spurr NK, Burns DK, Roses AD, Saunders AM, Goldstein DB (2005) A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet 37:84–89CrossRefPubMedGoogle Scholar
  24. 24.
    Walton R, Kimber M, Rockett K, Trafford C, Kwiatkowski D, Sirugo G (2005) Haplotype block structure of the cytochrome P450 CYP2C gene cluster on chromosome 10. Nat Genet 37:915–916CrossRefPubMedGoogle Scholar
  25. 25.
    Yasar U, Lundgren S, Eliasson E, Bennet A, Wiman B, de Faire U, Rane A (2002) Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun 299:25–28CrossRefPubMedGoogle Scholar
  26. 26.
    Mamiya K, Ieiri I, Miyahara S, Imai J, Furuumi H, Fukumaki Y, Ninomiya H, Tashiro N, Yamada H, Higuchi S (1998) Association of polymorphisms in the cytochrome P450 (CYP) 2C19 and 2C18 genes in Japanese epileptic patients. Pharmacogenetics 8:87–90CrossRefPubMedGoogle Scholar
  27. 27.
    Halling J, Petersen MS, Damkier P, Nielsen F, Grandjean P, Pál W, Lundgren S, Lundblad MS, Brøsen K (2005) Polymorphisms of CYP2D6, CYP2C19, CYP2C9, CYP2C8 in the Faroese population. Eur J Clin Pharmacol 61:491–497CrossRefPubMedGoogle Scholar
  28. 28.
    Heimdal K, Andersen TI, Skrede M, Fosså SD, Berg K, Børresen AL (1995) Association studies of estrogen receptor polymorphisms in a Norwegian testicular cancer population. Cancer Epidemiol Biomarkers Prev 4(2):123–126PubMedGoogle Scholar
  29. 29.
    Tefre T, Daly AK, Armstrong M, Leathart JB, Idle JR, Brøgger A, Børresen AL (1994) Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics 4(2):47–57CrossRefPubMedGoogle Scholar
  30. 30.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  31. 31.
    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedGoogle Scholar
  32. 32.
    Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462CrossRefPubMedGoogle Scholar
  33. 33.
    Ramsjö M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L (2010) CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol doi: 10.1007/s00228-010-0835-0 Google Scholar
  34. 34.
    Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG (2009) Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece. Pharmacogenomics 10:43–49CrossRefPubMedGoogle Scholar
  35. 35.
    Miura J, Obua C, Abbo C, Kaneko S, Tateishi T (2009) Cytochrome P450 2C19 genetic polymorphisms in Ugandans. Eur J Clin Pharmacol 65:319–320CrossRefPubMedGoogle Scholar
  36. 36.
    Sugimoto K, Uno T, Yamazaki H, Tateishi T (2008) Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65:437–439CrossRefPubMedGoogle Scholar
  37. 37.
    Justenhoven C, Hamann U, Pierl CB, Baisch C, Harth V, Rabstein S, Spickenheuer A, Pesch B, Brüning T, Winter S, Ko YD, Brauch H (2009) CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 115:391–396CrossRefPubMedGoogle Scholar
  38. 38.
    Gawrońska-Szklarz B, Siuda A, Kurzawski M, Bielicki D, Marlicz W, Droździk M (2010) Effects of CYP2C19, MDR1, and interleukin 1-B gene variants on the eradication rate of Helicobacter pylori infection by triple therapy with pantoprazole, amoxicillin, and metronidazole. Eur J Clin Pharmacol 66:681–687CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rasmus S. Pedersen
    • 1
    • 2
    Email author
  • Charlotte Brasch-Andersen
    • 1
  • Sarah C. Sim
    • 2
  • Troels K. Bergmann
    • 1
  • Jónrit Halling
    • 1
    • 3
  • Maria S. Petersen
    • 1
    • 3
  • Pál Weihe
    • 3
  • Hege Edvardsen
    • 4
    • 5
  • Vessela N. Kristensen
    • 4
    • 5
    • 6
  • Kim Brøsen
    • 1
  • Magnus Ingelman-Sundberg
    • 2
  1. 1.Institute of Public Health, Clinical PharmacologyUniversity of Southern DenmarkOdenseDenmark
  2. 2.Section of Pharmacogenetics, Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
  3. 3.Department of Occupational Medicines and Public HealthThe Faroese Hospital SystemTòrshavnFaroe Islands
  4. 4.Department of Genetics, Institute of Cancer ResearchOslo University Hospital RadiumhospitaletOsloNorway
  5. 5.Institute of Clinical MedicineUniversity of OsloOsloNorway
  6. 6.EpiGen, Institute for Clinical MedicineAkershus University HospitalOsloNorway

Personalised recommendations