European Journal of Clinical Pharmacology

, Volume 66, Issue 4, pp 369–374

Integrating pharmacogenetics and therapeutic drug monitoring: optimal dosing of imatinib as a case-example

  • Alain Li-Wan-Po
  • Peter Farndon
  • Charles Craddock
  • Michael Griffiths



To illustrate the interface of pharmacogenetics and therapeutic drug monitoring and to estimate target blood level for imatinib in the treatment of chronic myelogenous leukemia


A literature review to provide the evidence and necessary data to support the case for the interface, and quantitative analysis of the data to estimate the target blood level for imatinib using receiver operating curve (ROC; signal detection theory) analysis.

Results and discussion

One study estimated the optimum target level of imatinib in chronic myelogenous leukaemia as 1002 ng/mL (1.70 µM) through ROC analysis. Using individual-patient level data reported in another study and the same methodology, we estimated the target level as 0.95 µM. This is consistent with the results of other observational studies where dose–response was not the primary research objective. The available evidence suggests considerable inter-individual variability in dose–blood level response. In addition to the pharmacogenetics of metabolic enzymes and transporters, genetic mutations in genes participating in the signalling pathways may also account for the wide inter-individual variability in dose–blood level and dose–clinical response relationships.


A single-dose regimen for all pharmacogenetically eligible patients is not the optimum strategy for prescribing imatinib to patients with chronic myelogenous leukaemia. We suggest that therapeutic drug monitoring aimed at ensuring a trough target level of 1 µM would reduce the incidence of pseudo-resistance and hence personalize treatment and optimise response to imatinib. Persistent resistance can then be probed further for other causes.


Chronic myeloid leukaemia Imatinib resistance Personalized medicine Therapeutic drug monitoring 


  1. 1.
    Schwartz R (2002) A molecular star in the wars against cancer. N Engl J Med 347(7):462–463CrossRefPubMedGoogle Scholar
  2. 2.
    Demetri GDvMM, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. A molecular star in the wars against cancer. N Engl J Med 347:472–480CrossRefPubMedGoogle Scholar
  3. 3.
    Wardelmann E, Thomas N, Merkelbach-Bruse S, Pauls K, Speidel N, Buttner R et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol 6(4):249–251CrossRefPubMedGoogle Scholar
  4. 4.
    Kantarjian HM, Talpaz M, O'Brien S, Giles F, Garcia-Manero G, Faderl S et al (2003) Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 101(2):473–475CrossRefPubMedGoogle Scholar
  5. 5.
    Kantarjian HM, Larson RA, Guilhot F, O'Brien SG, Mone M, Rudoltz M et al (2009) Efficacy of imatinib dose escalation in patients with chronic myeloid leukemia in chronic phase. Cancer 115(3):551–560CrossRefPubMedGoogle Scholar
  6. 6.
    Jabbour E, Kantarjian HM, Jones D, Shan J, O'Brien S, Reddy N et al (2009) Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood 113(10):2154–2160CrossRefPubMedGoogle Scholar
  7. 7.
    Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104(12):3739–3745CrossRefPubMedGoogle Scholar
  8. 8.
    Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109(8):3496–3499CrossRefPubMedGoogle Scholar
  9. 9.
    Singh N, Kumar L, Meena R, Velpandian T (2009) Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol 65(6):545–549CrossRefPubMedGoogle Scholar
  10. 10.
    Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028CrossRefPubMedGoogle Scholar
  11. 11.
    O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004CrossRefPubMedGoogle Scholar
  12. 12.
    Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417CrossRefPubMedGoogle Scholar
  13. 13.
    Green DM, Swets JA (1966) Signal detection theory and psychophysics. Peninsula Publ, Los AltosGoogle Scholar
  14. 14.
    Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108(6):1809–1820CrossRefPubMedGoogle Scholar
  15. 15.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056CrossRefPubMedGoogle Scholar
  16. 16.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(9):645–652CrossRefPubMedGoogle Scholar
  17. 17.
    Kantarjian HM, Talpaz M, O'Brien S, Smith TL, Giles FJ, Faderl S et al (2002) Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer Res 8(7):2177–2187PubMedGoogle Scholar
  18. 18.
    Baccarani M, Rosti G, Castagnetti F, Haznedaroglu I, Porkka K, Abruzzese E et al (2009) Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet study. Blood 113(19):4497–4504CrossRefPubMedGoogle Scholar
  19. 19.
    Science and Technology Committee (2009) Genomic medicine, vol 1. House of Lords, LondonGoogle Scholar
  20. 20.
    Mauro MJ (2009) Tailoring tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Cancer Control 16(2):108–121PubMedGoogle Scholar
  21. 21.
    Pollack A (2009) As pills treat cancer, insurance lags behind. New York Times 2009, April 15th:A1Google Scholar
  22. 22.
    Steinbrook R (2008) Saying no isn't NICE—the travails of Britain's National Institute for Health and Clinical Excellence. N Engl J Med 359(19):1977–1981CrossRefPubMedGoogle Scholar
  23. 23.
    Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K et al (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15(14):4750–4758CrossRefPubMedGoogle Scholar
  24. 24.
    Quintas-Cardama A, Kantarjian HM, Cortes JE (2009) Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 16(2):122–131PubMedGoogle Scholar
  25. 25.
    Volpe G, Panuzzo C, Ulisciani S, Cilloni D (2009) Imatinib resistance in CML. Cancer Lett 274(1):1–9CrossRefPubMedGoogle Scholar
  26. 26.
    Garg RJ, Kantarjian H, O'Brien S, Quintas-Cardama A, Faderl S, Estrov Z et al (2009) The use of nilotinib or dasatinib after failure to 2 prior tyrosine kinase inhibitors: long-term follow-up. Blood 114(20):4361–4368CrossRefPubMedGoogle Scholar
  27. 27.
    Quintas-Cardama A, Cortes J (2009) Chronic myeloid leukemia in the tyrosine kinase inhibitor era: what is the best therapy? Curr Oncol Rep 11(5):337–345CrossRefPubMedGoogle Scholar
  28. 28.
    Jabbour E, Cortes J, Kantarjian H (2009) Treatment selection after imatinib resistance in chronic myeloid leukemia. Target Oncol 4(1):3–10CrossRefPubMedGoogle Scholar
  29. 29.
    Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44(9):879–894CrossRefPubMedGoogle Scholar
  30. 30.
    Gardner ER, Burger H, van Schaik RH, van Oosterom AT, de Bruijn EA, Guetens G et al (2006) Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 80(2):192–201CrossRefPubMedGoogle Scholar
  31. 31.
    Li-Wan-Po A, Farndon P, Cooley C, Lithgow J (2010) When is a genetic test suitable for prime time? predicting the risk of prostate cancer as a case-example. Public Health Genomics 13:55–62. doi:10.1159/000218710 Google Scholar
  32. 32.
    Li-Wan-Po A (2010) Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol. doi:10.1111/j.1365-2125.2009.03578.x
  33. 33.
    Meyer zu Schwabedissen HE, Kim RB (2009) Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm 6(6):1644–1661CrossRefPubMedGoogle Scholar
  34. 34.
    Willson TM, Kliewer SA (2002) PXR, CAR and drug metabolism. Nat Rev Drug Discov 1(4):259–266CrossRefPubMedGoogle Scholar
  35. 35.
    Burk O, Wojnowski L (2004) Cytochrome P450 3A and their regulation. Naunyn Schmiedebergs Arch Pharmacol 369(1):105–124CrossRefPubMedGoogle Scholar
  36. 36.
    Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283(15):9674–9680CrossRefPubMedGoogle Scholar
  37. 37.
    Mishra PJ, Merlino G (2009) MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 119(8):2119–2123PubMedGoogle Scholar
  38. 38.
    Benet LZ (2009) The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol Pharm 6(6):1631–1643CrossRefPubMedGoogle Scholar
  39. 39.
    Gurney H, Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM et al (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82(1):33–40CrossRefPubMedGoogle Scholar
  40. 40.
    Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, Geoerger B et al (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14(21):7102–7109CrossRefPubMedGoogle Scholar
  41. 41.
    Dressman MA, Malinowski R, McLean LA, Gathmann I, Capdeville R, Hensley M et al (2004) Correlation of major cytogenetic response with a pharmacogenetic marker in chronic myeloid leukemia patients treated with imatinib (STI571). Clin Cancer Res 10(7):2265–2271CrossRefPubMedGoogle Scholar
  42. 42.
    McLean LA, Gathmann I, Capdeville R, Polymeropoulos MH, Dressman M (2004) Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Clin Cancer Res 10(1 Pt 1):155–165CrossRefPubMedGoogle Scholar
  43. 43.
    Bolton AE, Peng B, Hubert M, Krebs-Brown A, Capdeville R, Keller U et al (2004) Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol 53(2):102–106CrossRefPubMedGoogle Scholar
  44. 44.
    O'Brien SG, Meinhardt P, Bond E, Beck J, Peng B, Dutreix C et al (2003) Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89(10):1855–1859CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alain Li-Wan-Po
    • 1
  • Peter Farndon
    • 1
  • Charles Craddock
    • 2
  • Michael Griffiths
    • 3
  1. 1.National Genetics Education and Development CentreMorris House, c/o Birmingham Women’s HospitalBirminghamUK
  2. 2.Department of HaematologyQueen Elizabeth HospitalBirminghamUK
  3. 3.West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation TrustBirminghamUK

Personalised recommendations