European Journal of Clinical Pharmacology

, Volume 66, Issue 1, pp 77–86 | Cite as

Population pharmacokinetics of intravenous ondansetron in oncology and surgical patients aged 1−48 months

  • John T. MondickEmail author
  • Brendan M. Johnson
  • Lynda J. Haberer
  • Mark E. Sale
  • Peter C. Adamson
  • Charles J. Coté
  • James M. Croop
  • Mark W. Russo
  • Jeffrey S. Barrett
  • J. Frank Hoke
Pharmacokinetics and Disposition



Until recently, ondansetron was approved for the prevention of nausea and vomiting only in patients older than 2 years. However, as the use of ondansetron in patients younger than 2 years had been documented, characterization of ondansetron pharmacokinetics in this younger pediatric age group was warranted.


The pharmacokinetics of intravenously administered ondansetron were evaluated in oncology and surgical patients aged 1–48 months. Pooled data from 124 patients, including 745 pharmacokinetic samples, were analyzed using nonlinear mixed-effects modeling.


Ondansetron pharmacokinetics were described by a two-compartment model. Body-size effects on ondansetron disposition were accounted for via standard allometric relationships, normalized to 10.4 kg. A maturation process with a half-life of approximately 4 months was incorporated to describe a decrease in clearance (CL) in infants. Clearance [95% confidence interval (CI)] for a typical patient was 1.53 (1.34−1.78) L/h/kg0.75 with an interindividual variability of 56.8%. Ondansetron CL was reduced by 31%, 53%, and 76% for the typical 6-month-, 3-month-, and 1-month-old patient, respectively. Simulations showed that an ondansetron dose of 0.1 mg/kg in children younger than 6 months produced exposure similar to a 0.15-mg/kg dose in older children.


The population pharmacokinetic analysis of ondansetron allows for characterization of individual patients based on body weight and age. It is recommended that patients younger than 4 months receiving ondansetron be closely monitored.


Ondansetron Population pharmacokinetics Pediatric 



Brendan M. Johnson acknowledges support from a Clinical Pharmacokinetics/ Pharmacodynamics Fellowship provided by the University of North Carolina in collaboration with GlaxoSmithKline. The authors wish to acknowledge the following investigators of Study 1: Raafat Hannallah, Peter Davis, Joseph Tobin, and Victor Baum; and investigators who contributed pharmacokinetic data to Study 2: Jeanette Pullen, Lia Gore, Victor M. Aquino, Lisa Bomgaars, Jeffrey Blumer, Paul Gaynon, Stuart Goldman, Regina Jakacki, Mitchell Cairo, Henry Nicholson, Violet Shen, Burton Appel, James Alan Whitlock, Maxine L. Hetherington, Helen Irving, Amos Toren, Andreas Zoubek, Robert Klaassen, Purificacion Garcia-Miguel, and Arturo Munoz-Villa. The authors also wish to acknowledge Sharon C. Murray, Andrew P. Beelen, Linda M. Blackburn, Maura T. Watmuff, Vince Barnett, and Bonnie Whitehead of GlaxoSmithKline.


  1. 1.
    Bryson JC, Pritchard JF, Shurin S, Kernodle AE, Blumer JL (1991) Efficacy, pharmacokinetics (PK) and safety of ondansetron (OND) in pediatric chemotherapy patients (PTS). Clin Pharmacol Ther 49(2):161Google Scholar
  2. 2.
    Spahr-Schopfer IA, Lerman J, Sikich N, Palmer JL, Jorch U (1995) Pharmacokinetics of intravenous ondansetron in healthy children undergoing ear, nose, and throat surgery. Clin Pharmacol Ther 58(3):316–321CrossRefPubMedGoogle Scholar
  3. 3.
    Pritchard J (1992) Ondansetron metabolism and pharmacokinetics. Semin Oncol 19(Suppl 10):9–15PubMedGoogle Scholar
  4. 4.
    Caron E, Bussières JF, Lebel D, Mathews S, Milot J, Jacob JL et al (2003) Ondansetron for the prevention and treatment of nausea and vomiting following pediatric strabismus surgery. Can J Ophthalmol 38(3):214–222PubMedGoogle Scholar
  5. 5.
    McQueen KD, Milton JD (1994) Multicenter postmarketing surveillance of ondansetron therapy in pediatric patients. Ann Pharmacother 28(1):85–92PubMedGoogle Scholar
  6. 6.
    Smith PV, Walton DS (2001) Prevention of vomiting after general anesthesia for pediatric ophthalmic surgery. AANA J 69(1):39–43PubMedGoogle Scholar
  7. 7.
    Khalil SN, Roth AG, Cohen IT, Simhi E, Ansermino JM, Bolos ME, Coté CJ, Hannallah RS, Davis PJ, Brooks PB, Russo MW, Anschuetz GC, Blackburn LM (2005) A double-blind comparison of intravenous ondansetron and placebo for preventing postoperative emesis in 1- to 24-month-old pediatric patients after surgery under general anesthesia. Anesth Analg 101(2):356–361CrossRefPubMedGoogle Scholar
  8. 8.
    ZOFRAN Product Information (2005) GlaxoSmithKline, Research Triangle Park, NC Google Scholar
  9. 9.
    Finkelstein JW (1994) The effect of developmental changes in adolescence on drug disposition. J Adolesc Health 15(8):612–618CrossRefPubMedGoogle Scholar
  10. 10.
    Rodman JH (1994) Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design. J Adolesc Health 15(8):654–662CrossRefPubMedGoogle Scholar
  11. 11.
    Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH (2004) Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 92(2):208–217CrossRefPubMedGoogle Scholar
  12. 12.
    Hattis D, Ginsberg G, Sonawane B, Smolenski S, Russ A, Kozlak M, Goble R (2003) Differences in pharmacokinetics between children and adults–II. Children's variability in drug elimination half-lives and in some parameters needed for physiologically-based pharmacokinetic modeling. Risk Anal 23(1):117–142CrossRefPubMedGoogle Scholar
  13. 13.
    Capparelli EV (1994) Pharmacokinetic considerations in the adolescent: non-cytochrome P450 metabolic pathways. J Adolesc Health 15(8):641–647CrossRefPubMedGoogle Scholar
  14. 14.
    Rogers AS (1994) The role of cytochrome P450 in developmental pharmacology. J Adolesc Health 15(8):635–640CrossRefPubMedGoogle Scholar
  15. 15.
    Kearns GL, Robinson PK, Wilson JT, Wilson-Costello D, Knight GR, Ward RM, van den Anker JN (2003) Cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther 74(4):312–325CrossRefPubMedGoogle Scholar
  16. 16.
    de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36(6):439–452CrossRefPubMedGoogle Scholar
  17. 17.
    Bryant S, Bellamy L, Paloucek F, Wahl M (2003) Acute acetaminophen poisoning in children: kids aren't just little adults. J Emerg Med 24(4):472–473CrossRefPubMedGoogle Scholar
  18. 18.
    Strolin Benedetti M, Baltes EL (2003) Drug metabolism and disposition in children. Fundam Clin Pharmacol 17(3):281–299CrossRefPubMedGoogle Scholar
  19. 19.
    Linday LA (1994) Developmental changes in renal tubular function. J Adolesc Health 15(8):648–653CrossRefPubMedGoogle Scholar
  20. 20.
    Linday LA, Drayer DE, Khan MA, Cicalese C, Reidenberg MM (1984) Pubertal changes in net renal tubular secretion of digoxin. Clin Pharmacol Ther 35(4):438–446PubMedGoogle Scholar
  21. 21.
    van den Anker JN (1996) Pharmacokinetics and renal function in preterm infants. Acta Paediatr 85(12):1393–1399CrossRefPubMedGoogle Scholar
  22. 22.
    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 349(12):1157–1167CrossRefPubMedGoogle Scholar
  23. 23.
    Beal S, Sheiner BL (1992) NONMEM Users Guide. NONMEM Project Group, University of California at San FranciscoGoogle Scholar
  24. 24.
    de Alwis DP, Aarons L, Palmer JL (1998) Population pharmacokinetics of ondansetron: a covariate analysis. Br J Clin Pharmacol 46(2):117–125CrossRefPubMedGoogle Scholar
  25. 25.
    Dubois D, Du Bois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871Google Scholar
  26. 26.
    Anderson BJ, McKee AD, Holford NH (1997) Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet 33(5):313–327CrossRefPubMedGoogle Scholar
  27. 27.
    Yano Y, Beal SL, Sheiner LB (2001) Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn 28(2):171–192CrossRefPubMedGoogle Scholar
  28. 28.
    Ette EI (1997) Stability and performance of a population pharmacokinetic model. J Clin Pharmacol 37(6):486–495PubMedGoogle Scholar
  29. 29.
    Ette EI, Onyiah LC (2002) Estimating inestimable standard errors in population pharmacokinetic studies: the bootstrap with Winsorization. Eur J Drug Metab Pharmacokinet 27(3):213–224PubMedCrossRefGoogle Scholar
  30. 30.
    Anderson BJ, Allegaert K, Holford NH (2006) Population clinical pharmacology of children: modelling covariate effects. Eur J Pediatr 165(12):819–829CrossRefPubMedGoogle Scholar
  31. 31.
    Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet 41(12):959–998CrossRefPubMedGoogle Scholar
  32. 32.
    Dixon CM, Colthup PV, Serabjit-Singh CJ, Kerr BM, Boehlert CC, Park GR et al (1995) Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos 23(11):1225–1230PubMedGoogle Scholar
  33. 33.
    Edginton AN, Schmitt W, Voith B, Willmann S (2006) A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet 45(7):683–704CrossRefPubMedGoogle Scholar
  34. 34.
    Tateishi T, Nakura H, Asoh M, Watanabe M, Tanaka M, Kumai T, Takashima S, Imaoka S, Funae Y, Yabusaki Y, Kamataki T, Kobayashi S (1997) A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 61(26):2567–2574CrossRefPubMedGoogle Scholar
  35. 35.
    de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37(6):485–505CrossRefPubMedGoogle Scholar
  36. 36.
    Sonnier M, Cresteil T (1998) Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 251(3):893–898CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • John T. Mondick
    • 1
    Email author
  • Brendan M. Johnson
    • 3
  • Lynda J. Haberer
    • 3
  • Mark E. Sale
    • 4
  • Peter C. Adamson
    • 2
  • Charles J. Coté
    • 5
  • James M. Croop
    • 6
  • Mark W. Russo
    • 7
  • Jeffrey S. Barrett
    • 2
  • J. Frank Hoke
    • 3
  1. 1.Metrum InstituteTariffvilleUSA
  2. 2.Clinical Pharmacology and TherapeuticsChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Clinical Pharmacokinetics/Modeling and SimulationGlaxoSmithKlineResearch Triangle ParkUSA
  4. 4.Next Level SolutionsRaleighUSA
  5. 5.Division of Pediatric Anesthesiology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  6. 6.James Whitcomb Riley Hospital for ChildrenIndiana University School of MedicineIndianapolisUSA
  7. 7.Oncology Medicines Development CenterGlaxoSmithKlineCollegevilleUSA

Personalised recommendations