Advertisement

European Journal of Clinical Pharmacology

, Volume 65, Issue 6, pp 627–633 | Cite as

SFINX—a drug-drug interaction database designed for clinical decision support systems

  • Ylva Böttiger
  • Kari Laine
  • Marine L. Andersson
  • Tuomas Korhonen
  • Björn Molin
  • Marie-Louise Ovesjö
  • Tuire Tirkkonen
  • Anders Rane
  • Lars L. Gustafsson
  • Birgit Eiermann
Pharmacoepidemiology and Prescription

Abstract

Objective

The aim was to develop a drug-drug interaction database (SFINX) to be integrated into decision support systems or to be used in website solutions for clinical evaluation of interactions.

Methods

Key elements such as substance properties and names, drug formulations, text structures and references were defined before development of the database. Standard operating procedures for literature searches, text writing rules and a classification system for clinical relevance and documentation level were determined. ATC codes, CAS numbers and country-specific codes for substances were identified and quality assured to ensure safe integration of SFINX into other data systems. Much effort was put into giving short and practical advice regarding clinically relevant drug-drug interactions.

Results

SFINX includes over 8,000 interaction pairs and is integrated into Swedish and Finnish computerised decision support systems. Over 31,000 physicians and pharmacists are receiving interaction alerts through SFINX. User feedback is collected for continuous improvement of the content.

Conclusion

SFINX is a potentially valuable tool delivering instant information on drug interactions during prescribing and dispensing.

Keywords

Drug-drug interaction database Clinical decision support system Drug interactions 

Notes

Acknowledgements

The Finnish Ministry of Health and Social Affairs, the Stockholm County Council and Karolinska Institutet, Stockholm, Sweden, for financial support.

References

  1. 1.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205PubMedCrossRefGoogle Scholar
  2. 2.
    Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA (2003) Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA 289(13):1652–1658PubMedCrossRefGoogle Scholar
  3. 3.
    Bjerrum L, Andersen M, Petersen G, Kragstrup J (2003) Exposure to potential drug interactions in primary health care. Scand J Prim Health Care 21(3):153–158PubMedCrossRefGoogle Scholar
  4. 4.
    Neuvonen PJ, Niemi M, Backman JT (2006) Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 80(6):565–581PubMedCrossRefGoogle Scholar
  5. 5.
    Pai MP, Graci DM, Amsden GW (2000) Macrolide drug interactions: an update. Ann Pharmacother 34(4):495–513PubMedCrossRefGoogle Scholar
  6. 6.
    Mitchell PB (1997) Drug interactions of clinical significance with selective serotonin reuptake inhibitors. Drug Saf 17(6):390–406PubMedCrossRefGoogle Scholar
  7. 7.
    Shear N, Drake L, Gupta AK, Lambert J, Yaniv R (2000) The implications and management of drug interactions with itraconazole, fluconazole and terbinafine. Dermatology 201(3):196–203PubMedCrossRefGoogle Scholar
  8. 8.
    Hesse LM von Moltke LL, Greenblatt DJ (2003) Clinically important drug interactions with zopiclone, zolpidem and zaleplon. CNS Drugs 17(7):513–532CrossRefGoogle Scholar
  9. 9.
    US Food and Drug Administration (2006) Guidance for industry: drug interaction studies: study design, data analysis, and implications for dosing and labeling. http://www.fda.gov/cder/guidance/6695dft.pdf. Accessed 2008-10-09
  10. 10.
    US Food and Drug Administration (1999) Guidance for industry: in vivo metabolism/drug interactions: study design, data analysis and recommendation for dosing and labeling. http://www.fda.gov/Cder/guidance/2635fnl.pdf. Accessed 2008-10-09
  11. 11.
    EMEA: CPMP/ICH/291/95 (1998) Note for guidance on general considerations for clinical trials. http://www.emea.europa.eu/pdfs/human/ich/029195en.pdf. Accessed 2008-10-09
  12. 12.
    Sindrup SH, Brosen K, Bjerring P, Arendt-Nielsen L, Larsen U, Angelo HR et al (1990) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48(6):686–693PubMedGoogle Scholar
  13. 13.
    Sindrup SH, Arendt-Nielsen L, Brosen K, Bjerring P, Angelo HR, Eriksen B et al (1992) The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol 42(6):587–591PubMedCrossRefGoogle Scholar
  14. 14.
    Tirkkonen T, Laine K (2004) Drug interactions with potential to preventing prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin Pharmacol Ther 76(6):639–647PubMedCrossRefGoogle Scholar
  15. 15.
    Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Deveraux PJ, Beyene J et al (2005) Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 293(10):1223–1238PubMedCrossRefGoogle Scholar
  16. 16.
    van der Sijs H, Aarts J, Vulto A, Berg M (2006) Overriding of drug alerts in computerized physician order entry. J AM Med Inform Assoc 13(2):138–147PubMedCrossRefGoogle Scholar
  17. 17.
    Bergk V, Haefeli WE, Gasse C, Brenner H, Martin-Facklam M (2005) Information deficits in the summary of product characteristics preclude an optmial management of drug interactions: a comparison with evidence from the literature. Eur J Clin Pharmacol 61(5-6):327–335PubMedCrossRefGoogle Scholar
  18. 18.
    Wolters Kluwer (2008) Hansten and Horn’s drug interactions analysis and management. http://www.factsandcomparisons.com. Accessed 2008-10-09
  19. 19.
    Pharmaceutical Press (2008) Stockley’s drug interactions online version. http://www.medicinescomplete.com. Accessed 2008-10-09
  20. 20.
    Wolter Kluwers (2008) Drugline. http://www.ovid.com/site/catalog/Database/2816.jsp. Accessed 2008-10-09
  21. 21.
    Thomson (2008) DRUGDEX, system provided by MICROMEDEX. http://www.thomsonhc.com/hcs/librarian/PFPUI/i2UCSoAjEX3J. Accessed 2008-10-09
  22. 22.
    NCBI (2008) Medline. http://www.ncbi.nlm.nih.gov/sites/entrez. Accessed 2008-10-09
  23. 23.
    Elsevier (2007) Embase. http://www.embase.com. Accessed 2008-10-09
  24. 24.
    LIF (2008) Swedish PDR and SPC. http://www.fass.se. Accessed 2008-10-09
  25. 25.
    Terveys (2008) Pharmaca fennica. http://www.terveysportti.fi. Accessed 2008-10-09
  26. 26.
    EMEA (2008) The European public assessment reports (EPARs). http://www.emea.europa.eu/index/indexh1.htm. Accessed 2008-10-09
  27. 27.
    Sjöqvist F (1997) A new classification system for drug interactions. Eur J Clin Pharmacol 52 (Suppl):327aGoogle Scholar
  28. 28.
    Liaw ST, Schattner P (2003) Electronic decision support in general practice. What’s the hold up? Aust Fam Physician 3211:941–944Google Scholar
  29. 29.
    Sjöborg B, Bäckström T, Arvidsson LB, Andersen-Karlsson E, Blomberg LB, Eiermann B et al (2007) Design and implementation of a point-of-care computerized system for drug therapy in Stockholm metropolitan health region-bridging the gap between knowledge and practice. Int J Med Info 76(7):497–506CrossRefGoogle Scholar
  30. 30.
    Eliasson M, Bastholm P, Forsberg P, Henriksson K, Jacobson L et al (2006) Janus computerised prescribing system provides pharmacological knowledge at point of care – design, development and proof of concept. Eur J Clin Pharmacol 62(4):251–258PubMedCrossRefGoogle Scholar
  31. 31.
    Ahearn M, Kerr SJ (2003) General practitioners’ perceptions of the pharmaceutical decision-support tools in their prescribing software. Med J Aust 179(1):34–37PubMedGoogle Scholar
  32. 32.
    Heikkilä T, Lekander T, Raunio H (2006) Use of an online surveillance system for screening drug interactions in prescriptions in community pharmacies. Eur J Clin Pharmacol 62(8):661–665PubMedCrossRefGoogle Scholar
  33. 33.
    Grönroos PE, Irjala KM, Huupponen RK, Scheinin H, Forsstrom J, Forsström JJ (1997) A medication database – a tool for detecting drug interactions in hospital. Eur J Clin Pharmacol 53(1):13–17PubMedCrossRefGoogle Scholar
  34. 34.
    Grizzle AJ, Mahmood MH, Ko Y, Murphy JE, Armstrong EP, Skrepnek GH (2007) Reasons provided by prescribers when overriding drug-drug interaction alerts. Am J Manag Care 13(10):573–578PubMedGoogle Scholar
  35. 35.
    Thompson D, Oster G (1996) Use of terfenadine and contraindicated drugs. JAMA 275(17):1339–1341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ylva Böttiger
    • 5
  • Kari Laine
    • 2
    • 3
    • 4
  • Marine L. Andersson
    • 5
  • Tuomas Korhonen
    • 2
    • 3
    • 4
  • Björn Molin
    • 1
  • Marie-Louise Ovesjö
    • 5
  • Tuire Tirkkonen
    • 2
    • 3
    • 4
  • Anders Rane
    • 5
  • Lars L. Gustafsson
    • 1
    • 5
  • Birgit Eiermann
    • 1
  1. 1.Department of Drug Management and InformaticsStockholm County CouncilStockholmSweden
  2. 2.medbase Ltd.TurkuFinland
  3. 3.Department of Pharmacology, Drug Development and TherapeuticsUniversity of TurkuTurkuFinland
  4. 4.Unit of Clinical PharmacologyTYKSLABTurkuFinland
  5. 5.Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska InstitutetKarolinska University HospitalStockholmSweden

Personalised recommendations