Therapeutic traditions, patient socioeconomic characteristics and physicians’ early new drug prescribing–a multilevel analysis of rosuvastatin prescription in south Sweden

Special Article



To investigate the role that both patient and outpatient factors related to health care practice (HCP) play in physicians’ early adoption of rosuvastatin.

Materials and methods

Generalized estimation equations (GEEs) and alternating logistic regression (ALR) with pair-wise odds ratios (PWORs) were used to measure similarities in rosuvastatin prescription within HCPs for all individuals with statin prescriptions in Skåne region, Sweden.


After 12 months, 53% of the HCPs had adopted the new statin. Rosuvastatin prescriptions co-occured within certain HCPs 3.56 times more often than one would have expected based on a random distribution. Private HCPs had four times higher probability of prescribing rosuvastatin than public HCPs.


Contextual characteristics of the HCP seem to be relevant for understanding physicians’ motivation to adopt rosuvastatin. Moreover, our study reveals inequity in health care as the socioeconomic status of the patients appears to influence the prescribing behavior of the physicians irrespective of medical reasons.


Therapeutic traditions Alternating logistic regression Early adopter Rosuvastatin 


  1. 1.
    Coleman J, Menzel H, Katz E (1959) Social processes in physicians’ adoption of a new drug. J Chronic Dis 9(1):1–19PubMedCrossRefGoogle Scholar
  2. 2.
    Dybdahl T, Andersen M, Kragstrup J, Kristiansen IS, Sondergaard J (2005) General practitioners’ adoption of new drugs and previous prescribing of drugs belonging to the same therapeutic class: a pharmacoepidemiological study. Br J Clin Pharmacol 60(5):526–533PubMedCrossRefGoogle Scholar
  3. 3.
    Dybdahl T, Andersen M, Sondergaard J, Kragstrup J, Kristiansen IS (2004) Does the early adopter of drugs exist? A population-based study of general practitioners’ prescribing of new drugs. Eur J Clin Pharmacol 60(9):667–672PubMedCrossRefGoogle Scholar
  4. 4.
    Greving JP, Denig P, Van der Veen WJ, Beltman FW, Sturkenboom MC, Haaijer-Ruskamp FM (2006) Determinants for the adoption of angiotensin II receptor blockers by general practitioners. Soc Sci Med 63(11):2890–2898PubMedCrossRefGoogle Scholar
  5. 5.
    Jones MI, Greenfield SM, Bradley CP (2001) Prescribing new drugs: qualitative study of influences on consultants and general practitioners. Brit Med J 323(7309):378–381PubMedCrossRefGoogle Scholar
  6. 6.
    Steffensen FH, Sörensen H, Olesen F (1999) Diffusion of new drugs in Danish general practice. Fam Prac 16:407–413CrossRefGoogle Scholar
  7. 7.
    Tamblyn R, McLeod P, Hanley JA, Girard N, Hurley J (2003) Physician and practice characteristics associated with the early utilization of new prescription drugs. Med Care 41(8):895–908PubMedCrossRefGoogle Scholar
  8. 8.
    Florentinus SR, Nielsen MW, van Dijk L, Leufkens HG, Hansen EH, Heerdink ER (2005) Patient characteristics associated with prescribing of a newly introduced drug: the case of rofecoxib. Eur J Clin Pharmacol 61(2):157–159PubMedCrossRefGoogle Scholar
  9. 9.
    Kozyrskyj A, Raymond C, Racher A (2007) Characterizing early prescribers of newly marketed drugs in Canada: a population-based study. Eur J Clin Pharmacol 63(6):597–604PubMedCrossRefGoogle Scholar
  10. 10.
    Haaijer-Ruskamp FM, Hemminki E (1993) The social aspects of drug use. WHO Reg Publ Eur Ser 45:97–124PubMedGoogle Scholar
  11. 11.
    Merlo J, Lynch JW, Yang M, Lindstrom M, Ostergren PO, Rasmusen NK, Rastam L (2003) Effect of neighborhood social participation on individual use of hormone replacement therapy and antihypertensive medication: a multilevel analysis. Am J Epidemiol 157(9):774–783PubMedCrossRefGoogle Scholar
  12. 12.
    Läkemedelsverket (2004) Produktresumén revideras för Crestor (Product resume for Crestor is revised) (in Swedish). Accessed 18 Sept 2008
  13. 13.
    Editors (2003) The statin wars: why AstraZeneca must retreat. Lancet 362(9393):1341Google Scholar
  14. 14.
    Ohlsson O, Kjellström T (2003) Landsomfattande konsensus för behandling av höga blodfetter (För landets läkemedelskommittéordförande LOK) (Consensus for treament of high lipids) (in Swedish). Lund, SwedenGoogle Scholar
  15. 15.
    Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (2006) Evaluation of the effects of statins (with particular consideration of atorvastatin). IQWiG, CologneGoogle Scholar
  16. 16.
    LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. J Am Med Assoc 282(24):2340–2346CrossRefGoogle Scholar
  17. 17.
    Vrecer M, Turk S, Drinovec J, Mrhar A (2003) Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke. Meta-analysis of randomized trials. Int J Clin Pharmacol Ther 41(12):567–577PubMedGoogle Scholar
  18. 18.
    Davis P, Gribben B (1995) Rational prescribing and interpractitioner variation. A multilevel approach. Int J Technol Assess Health Care 11(3):428–442PubMedGoogle Scholar
  19. 19.
    Davis P, Gribben B, Lay-Yee R, Scott A (2002) How much variation in clinical activity is there between general practitioners? A multi-level analysis of decision-making in primary care. J Health Serv Res Pol 7(4):202–208CrossRefGoogle Scholar
  20. 20.
    Ohlsson H, Lindblad U, Lithman T, Ericsson B, Gerdtham UG, Melander A, Rastam L, Merlo J (2005) Understanding adherence to official guidelines on statin prescribing in primary health care – a multi-level methodological approach. Eur J Clin Pharmacol 61(9):657–665PubMedCrossRefGoogle Scholar
  21. 21.
    Ohlsson H, Merlo J (2007) Understanding the effects of a decentralized budget on physicians’ compliance with guidelines for statin prescription; a multilevel methodological approach. BMC Health Serv Res 7:68 (8 May 2007)PubMedCrossRefGoogle Scholar
  22. 22.
    Carey V, Zeger SL, Diggle P (1993) Modelling multivariate binary data with alternating logistic regression. Biometrika 80(3):517–526CrossRefGoogle Scholar
  23. 23.
    Socialstyrelsen (2008) Läkemedelsregistret. Accessed 12 May 2008
  24. 24.
    Chaix B, Rosvall M, Merlo J (2007) Assessment of the magnitude of geographical variations and socioeconomic contextual effects on ischaemic heart disease mortality: a multilevel survival analysis of a large Swedish cohort. J Epidemiol Comm Health 61(4):349–355CrossRefGoogle Scholar
  25. 25.
    World Health Organisation (2008) About the ATC/DDD system. Accessed 12 Apr 2008
  26. 26.
    Scott A, Shiell A, King M (1996) Is general practitioner decision making associated with patient socio-economic status? Soc Sci Med 42(1):35–46PubMedCrossRefGoogle Scholar
  27. 27.
    WorldBank (2008) Country classification. Accessed 15 Jan 2008
  28. 28.
    Swedish Association of Local Authorities and Regions (2005) Swedish health care in an international context. SAoLAa, StockholmGoogle Scholar
  29. 29.
    Bengtsson H (2003) Nuvarnade kommunuppdelning (Classification of municipalities) (in Swedish). Svenska Kommunförbundet Accessed 22 Jan 2008
  30. 30.
    Glass H, Rosenthal B (2004) Demographics, practices, and prescribing characteristics of physicians who are early adopters of new drugs. Pharm Therapeut 29(11):699–708Google Scholar
  31. 31.
    Wamala SP, Mittleman MA, Schenck-Gustafsson K, Orth-Gomer K (1999) Potential explanations for the educational gradient in coronary heart disease: a population-based case-control study of Swedish women. Am J Public Health 89(3):315–321PubMedCrossRefGoogle Scholar
  32. 32.
    Jacoby A, Smith M, Eccles M (2003) A qualitative study to explore influences on general practitioners’ decisions to prescribe new drugs. Br J Gen Pract 53(487):120–125PubMedGoogle Scholar
  33. 33.
    Rogers E (1962) Diffusion of innovation. Free Press, New YorkGoogle Scholar
  34. 34.
    Brookhart MA, Solomon DH, Wang P, Glynn RJ, Avorn J, Schneeweiss S (2006) Explained variation in a model of therapeutic decision making is partitioned across patient, physician, and clinic factors. J Clin Epidemiol 59(1):18–25PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez-Valcarcel B, Ortun-Rubio V, Cabez-Mora A, Lopez-Cabañas A, Diaz-Berenger J, Alamo-Santana F (2002) Evaluation del uso apropiado de medicamentos en atencion primaria. Como se puede mejorar? (Evaluation of the appropriate use of medication in primary care. How do we improve it?) (in Spanish). Aten Primaria 30:467–471Google Scholar
  36. 36.
    Hjerpe P, Fornwall S, Merlo J (2004) Therapeutic traditions and compliance with local therapeutic guidelines on lipid lowering drugs – a multilevel analysis in the Skaraborg Primary Healthcare Database (SPHD). International Society for Pharmacoepidemiology, Bordeaux, FranceGoogle Scholar
  37. 37.
    Smits HL (1986) Medical practice variations revisited. Health Aff (Millwood) 5(3):91–96CrossRefGoogle Scholar
  38. 38.
    Wennberg JE, Barnes BA, Zubkoff M (1982) Professional uncertainty and the problem of supplier-induced demand. Soc Sci Med 16(7):811–824PubMedCrossRefGoogle Scholar
  39. 39.
    Bobashev GV, Anthony JC (1998) Clusters of marijuana use in the United States. Am J Epidemiol 148(12):1168–1174PubMedGoogle Scholar
  40. 40.
    Bobashev GV, Anthony JC (2000) Use of alternating logistic regression in studies of drug-use clustering. Subst Use Misuse 35(6–8):1051–1073PubMedCrossRefGoogle Scholar
  41. 41.
    Chauvin C, Bouvarel I, Beloeil PA, Orand JP, Guillemot D, Sanders P (2005) A pharmaco-epidemiological analysis of factors associated with antimicrobial consumption level in turkey broiler flocks. Vet Res 36(2):199–211PubMedCrossRefGoogle Scholar
  42. 42.
    Delva J, Bobashev G, Gonzalez G, Cedeno M, Anthony JC (2000) Clusters of drug involvement in Panama: results from Panama’s 1996 National Youth Survey. Drug Alcohol Depend 60(3):251–257PubMedCrossRefGoogle Scholar
  43. 43.
    Katz J, Carey V, Zeger SL, Sommer A (1993) Estimation of design effects and diarrhea within households and villages. Am J Epidemiol 138:994–1006PubMedGoogle Scholar
  44. 44.
    Katz J, Zeger SL, West KJ, Tielsch J, Sommer A (1993) Clustering of xerophthalmia within households and villages. Int J Epidemiol 22:709–715PubMedCrossRefGoogle Scholar
  45. 45.
    Petronis KR, Anthony JC (2003) A different kind of contextual effect: geographical clustering of cocaine incidence in the USA. J Epidemiol Community Health 57(11):893–900PubMedCrossRefGoogle Scholar
  46. 46.
    Preisser JS, Arcury TA, Quandt SA (2003) Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data. Am J Epidemiol 158(5):495–501PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Social Epidemiology, Department of Clinical Sciences in Malmö, Faculty of MedicineLund UniversityMalmöSweden
  2. 2.Department of Social MedicineSkåne RegionMalmöSweden
  3. 3.UMR-S 707 InsermUniversité Pierre et Marie Curie-Paris 6, Faculté de MédecineParisFrance
  4. 4.Social Epidemiology, Department of Clinical Sciences, Faculty of MedicineLund UniversityMalmöSweden

Personalised recommendations