European Journal of Clinical Pharmacology

, Volume 64, Issue 4, pp 357–365 | Cite as

High prevalence of the CYP2B6 516G→T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe

  • Christopher Nyakutira
  • Daniel Röshammar
  • Emmanuel Chigutsa
  • Prosper Chonzi
  • Michael Ashton
  • Charles Nhachi
  • Collen MasimirembwaEmail author



The study sought to investigate the relationship between efavirenz exposure and the CYP2B6 516G→T(*6) genotype in HIV/AIDS outpatients, using pharmacokinetic modelling and simulation.


Blood samples where obtained from 74 outpatients treated with a combination regimen including 600 mg efavirenz daily for a duration of at least 3 weeks at clinics in Harare, Zimbabwe. The subjects were genotyped for the major CYP2B6 variant, CYP2B6*6, associated with reduced enzyme activity, using a PCR-RFLP method. Efavirenz plasma concentrations were determined by HPLC-UV. Population pharmacokinetic modelling and simulation of the data were performed in NONMEM VI.


A high allele frequency of the CYP2B6*6 allele of 49% was observed. Efavirenz plasma concentrations were above 4 mg/L in 50% of the patients. Genotype and sex were identified as predictive covariates of efavirenz disposition. Pharmacokinetic parameter estimates indicate that a dose reduction to 400 mg efavirenz per day is possible in patients homozygous for the CYP2B6*6 genotype without compromising therapeutic efficacy.


The CYP2B6*6 allele occurs at a high frequency in people of African origin and is associated with high efavirenz concentrations. Simulations indicate that an a priori 35% dose reduction in homozygous CYP2B6*6 patients would maintain drug exposure within the therapeutic range in this group of patients. Our preliminary results suggest the conduct of a prospective clinical dose optimization study to evaluate the utility of genotype-driven dose adjustment in this population.


Efavirenz HIV/AIDS patients CYP2B6 polymorphism Pharmacokinetic modelling NONMEM 



We are grateful to the Wilkins and Beatrice Infectious Disease Clinics for assistance with sample collection. We are grateful to AstraZeneca, Mölndal, DMPK Development Section and Dr. Xueqing Li for hosting Christopher Nyakutira for a 3-month bioanalytical training. Emmanuel Chigutsa is a recipient of a master’s fellowship from the International, Clinical and Operational Health Services Research Training Award (ICOHRTA) for AIDS and TB. Tafadzwa Mhlanga’s assistance with the CYP2B6*6 genotyping work is also acknowledged.


  1. 1.
    WHO (2003) Scaling up antiretroviral therapy in resource-limited settings: treatment guidelines for a public health approach, 2003 revision. Cited April 25, 2007
  2. 2.
    De Clercq E (2007) Anti-HIV drugs. Verh K Acad Geneeskd Belg 69:81–104PubMedGoogle Scholar
  3. 3.
    Hahn JA, Maier M, Byakika-Tusiime J, Oyugi JH, Bangsberg DR (2007) Hepatotoxicity during nevirapine-based fixed-dose combination antiretroviral therapy in Kampala, Uganda. J Int Assoc Physicians AIDS Care (Chic Ill) 6(2):83–86CrossRefGoogle Scholar
  4. 4.
    Jamisse L, Balkus J, Hitti J, Gloyd S, Manuel R, Osman N, Djedje M, Farquhar C (2007) Antiretroviral-associated toxicity among HIV-1-seropositive pregnant women in Mozambique receiving nevirapine-based regimens. J Acquir Immune Defic Syndr 44(4):371–376PubMedCrossRefGoogle Scholar
  5. 5.
    Rivero A, Mira JA, Pineda JA (2007) Liver toxicity induced by non-nucleoside reverse transcriptase inhibitors. J Antimicrob Chemother 59(3):342–346PubMedCrossRefGoogle Scholar
  6. 6.
    Harries AD (2006) HIV/AIDS and TB. Trop Doct 36(2):65–67PubMedCrossRefGoogle Scholar
  7. 7.
    Maher D, Harries A, Getahun H (2005) Tuberculosis and HIV interaction in sub-Saharan Africa: impact on patients and programmes; implications for policies. Trop Med Int Health 10(8):734–742PubMedCrossRefGoogle Scholar
  8. 8.
    Smith PF, DiCenzo R, Morse GD (2001) Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 40:893–905PubMedCrossRefGoogle Scholar
  9. 9.
    Adkins JC, Noble S (1998) Efavirenz. Drugs 56(6):1055–1064PubMedCrossRefGoogle Scholar
  10. 10.
    Barrett J, Joshi AS, Chai M, Ludden TM, Fiske WD, Pieniaszek HJ (2002) Population pharmacokinetic meta-analysis with efavirenz. Int J Clin Pharmacol Ther 40:507–519PubMedGoogle Scholar
  11. 11.
    Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z (2003) The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306:287–300PubMedCrossRefGoogle Scholar
  12. 12.
    Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbe L, Wilkinson GR, Clifford DB, D’Aquila RT, De Gruttola V, Pollard RB, Merigan TC, Hirsch MS, George AL Jr, Donahue JP, Kim RB (2005) Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an adult AIDS clinical trials group study. J Infect Dis 192:1931–1942PubMedCrossRefGoogle Scholar
  13. 13.
    Ribaudo H, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM, Clifford DB, Marzolini C, Fletcher CV, Tashima KT, Kuritzkes DR, Acosta EP (2006) Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an adult aids clinical trials group study. Clin Infect Dis 42:401–407PubMedCrossRefGoogle Scholar
  14. 14.
    Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL, Keiser O, Biollaz J, Décosterd L, Telenti A and the Swiss HIV cohort study (2005) Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 15(1):1–5PubMedCrossRefGoogle Scholar
  15. 15.
    Staszewski S, Morales-Ramirez J, Tashima KT, Rachlis A, Skiest D, Stanford J, Stryker R, Johnson P, Labriola DF, Farina D, Manion DJ, Ruiz NM (1999) Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med 341:1865–1873PubMedCrossRefGoogle Scholar
  16. 16.
    Robbins GK, De Gruttola V, Shafer RW, Smeaton LM, Snyder SW, Pettinelli C, Dube MP, Fischl MA, Pollard RB, Delapenha R, Gedeon L, van der Horst C, Murphy RL, Becker MI, D’Aquila RT, Vella S, Merigan TC, Hirsch MS; AIDS Clinical Trials Group 384 Team (2003) Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med 349:2293–2303PubMedCrossRefGoogle Scholar
  17. 17.
    Bartlett JA, Johnson J, Herrera G, Sosa N, Rodriguez A, Liao Q, Griffith S, Irlbeck D, Shaefer MS (2006) Long-term results of initial therapy with abacavir and lamivudine combined with efavirenz, amprenavir/ritonavir, or stavudine. J Acquir Immune Defic Syndr 43:284–292PubMedCrossRefGoogle Scholar
  18. 18.
    Daneil C, Moh R, Anzian A, Abo Y, Chenal H, Guehi C, Gabillard D, Sorho S, Rouet F, Eholie S, Anglaret X (2006) Tolerance and acceptability of an efavirenz-based regimen in 740 adults (predominantly women) in west Africa. J Acquir Immune Defic Syndr 42(1):29–35CrossRefGoogle Scholar
  19. 19.
    Wester CW, Kim S, Bussman H, Ndwapi N, Peter TF, Gaolathe T, Mujugira A, Busang L, Vanderwarker C, Cardiello P, Johnson O, Thior I, Mazonde P, Moffat H, Essex M, Marlink R (2005) Initial response to highly active antiretroviral therapy in HIV-1C infected adults in a public sector treatment program in Botswana. J Acquir Immune Defic Syndr 40:336–343PubMedCrossRefGoogle Scholar
  20. 20.
    Kebba A, Atwine D, Mwebaze R, Kityo C, Nakityo R, Peter M (2002) Therapeutic responses to AZT + 3TC + EFV in advanced antiretroviral naive HIV type 1-infected Ugandan patients. IDS Res Hum Retroviruses 18:1181–1187CrossRefGoogle Scholar
  21. 21.
    Coetzee D, Hildebrand K, Boulle A, Maartens G, Louis F, Labatala V, Reuter H, Ntwana N, Goemaere E (2004) Outcomes after two years of providing antiretroviral treatment in Khayelitsha, South Africa. AIDS 18:887–895PubMedCrossRefGoogle Scholar
  22. 22.
    Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 5:71–75CrossRefGoogle Scholar
  23. 23.
    Holford N (1999) Target concentration intervention: beyond Y2K. Br J Clin Pharm 48:9–13CrossRefGoogle Scholar
  24. 24.
    Beal SL, Sheiner LB, Boeckmann AJ (eds) (1986–2006) NONMEM users guides. Icon Development Solutions, Ellicot City, MD, USAGoogle Scholar
  25. 25.
    Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257PubMedCrossRefGoogle Scholar
  26. 26.
    Savic RM, Wilkins JJ, Karlsson MO (2006) (Un)informativeness of empirical Bayes estimate-based diagnostics. AAPS J 8(S2):abstract T3360Google Scholar
  27. 27.
    Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, Koopmans P, Kroon F, Sprenger H, Lindemans J, Schenk P, van Schaik R (2005) Interpatient variability in the pharmacokinetics of the HIV non-nucleosid reverse transcriptase inhibitor efavirenz: the effect of gender, race and CYP2B6 polymorphism. Br J Clin Pharm 61:148–154CrossRefGoogle Scholar
  28. 28.
    Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, Clifford DB, Hulgan T, Marzolini C, Acosta E (2004) Pharmacogenetics of efavirenz and central nervous system side effects: an adult AIDS clinical trials group study. AIDS 18:2391–2400PubMedGoogle Scholar
  29. 29.
    van Twillert G, van Santen G, Godfried MH (2005) Severe psychosis in an African woman due to the antiretroviral agent efavirenz. Ned Tijdschr Geneeskd 26:2687–2689Google Scholar
  30. 30.
    Spire B, Carrieri P, Garzot MA, L’Henaff M, Obadia Y, TRT-5 Group (2004) Factors associated with efavirenz discontinuation in a large community-based sample of patients. AIDS Care 16:558–564PubMedCrossRefGoogle Scholar
  31. 31.
    Lamba V, Lamba J, Yasuda K, S Strom, J Davila, Hancock ML, Fakenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR(constitutive androstane receptor) expression. J Pharmacol Exp Ther 307(3):906–922PubMedCrossRefGoogle Scholar
  32. 32.
    Wolbold R, Klein K, Burk O, Nüssler AK, Neuhaus P, Eichelbaum M, Schwab M, Zanger UM (2003) Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 38(4):978–988PubMedGoogle Scholar
  33. 33.
    Csajka C, Marzolini C, Fattinger K, Decosterd LA, Fellay J, Telenti A, Biollaz J, Buclin T (2002) Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharm Ther 73:20–30Google Scholar
  34. 34.
    Pfister M, Labbé L, Hammer SM, Mellors J, Bennett KK, Rosenkrantz S, Sheiner LB (2003) Population pharmacokinetics and pharmacodynamics of efavirenz, nelfinavir and indinavir: adult AIDS clinical trial group study 398. Antimicrob Agents Chemother 47:130–137CrossRefGoogle Scholar
  35. 35.
    Kappelhoff BS, Huitema AD, Yalvac Z, Prins JM, Mulder JW, Meenhorst PL, Beijnen JH (2005) Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected individuals. Clin Pharmacokinet 44:849–861PubMedCrossRefGoogle Scholar
  36. 36.
    Holford NHG, Kimko HC, Montleone JPR, Peck C (2000) Simulation of clinical trials. Annu Rev Pharmacol Toxicol 40:67–95CrossRefGoogle Scholar
  37. 37.
    Turpeinen M, Raunio H, Olavi P (2006) The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 7:705–714PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christopher Nyakutira
    • 1
    • 2
  • Daniel Röshammar
    • 3
  • Emmanuel Chigutsa
    • 1
    • 4
  • Prosper Chonzi
    • 5
  • Michael Ashton
    • 3
  • Charles Nhachi
    • 2
  • Collen Masimirembwa
    • 1
    Email author
  1. 1.Department of DMPK & BACAfrican Institute of Biomedical Science and Technology (AiBST)HarareZimbabwe
  2. 2.Department of Clinical Pharmacology, School of Health SciencesUniversity of ZimbabweHarareZimbabwe
  3. 3.Department of PharmacologySahlgrenska Academy at Göteborg UniversityGöteborgSweden
  4. 4.School of PharmacyUniversity of ZimbabweHarareZimbabwe
  5. 5.Harare City Council Health ServicesHarareZimbabwe

Personalised recommendations