European Journal of Clinical Pharmacology

, Volume 62, Issue 5, pp 367–371

Pharmacokinetics of dihydroartemisinin following oral artesunate treatment of pregnant women with acute uncomplicated falciparum malaria

  • R. McGready
  • K. Stepniewska
  • S. A. Ward
  • T. Cho
  • G. Gilveray
  • S. Looareesuwan
  • N. J. White
  • F. Nosten
Pharmacokinetics and Disposition

Abstract

Objective

To determine the pharmacokinetic properties of dihydroartemisinin (DHA) following oral artesunate treatment in women with recrudescent multi-drug resistant falciparum malaria, in the second and third trimesters of pregnancy.

Methods

Serial plasma concentrations of artesunate and DHA were measured in 24 women after the final dose of a 3 day treatment with artesunate (4 mg kg−1 day−1) and atovaquone (20 mg kg−1 day−1) plus proguanil (8 mg kg−1 day−1), daily. Conventional non-compartmental modelling and a population one-compartment pharmacokinetic model were applied to the data.

Results

Artesunate was very rapidly eliminated. For DHA the median [90% range] estimate of oral clearance (CI/F) was 4.0 [0.8–20.7] l hour−1 kg−1, total apparent volume of distribution (Vd/f) was 3.4 [0.9–60.7] l/kg, and terminal elimination half-life was 1.0 [0.6–2.4] h.

Conclusion

The kinetics of DHA are modified by pregnancy. The plasma levels of the active antimalarial metabolite DHA are lower than reported previously in non-pregnant adults. Dose-optimisation studies in pregnant women are needed.

Keywords

Malaria Plasmodium falciparum Artesunate DHA Pharmacokinetics Pregnancy 

References

  1. 1.
    McGready R, Nosten F(1999) The Thai-Burmese border: drug studies of Plasmodium falciparum in pregnancy. Ann Trop Med Parasitol 93 [Suppl 1]: S19–S23PubMedCrossRefGoogle Scholar
  2. 2.
    McGready R, Cho T, Keo NK, Thwai KL, Villegas L, Looareesuwan S, White NJ, Nosten F (2001) Artemisinin antimalarials in pregnancy: a prospective treatment study of 539 episodes of multidrug-resistant Plasmodium falciparum. Clin Infect Dis 33:2009–2016PubMedCrossRefGoogle Scholar
  3. 3.
    Angus BJ, Thaiaporn I, Chanthapadith K, Suputtamongkol Y, White NJ (2002) Oral artesunate dose-response relationship in acute falciparum malaria. Antimicrob Agents Chemother 46:778–782PubMedCrossRefGoogle Scholar
  4. 4.
    McGready R, Stepniewska K, Edstein MD, Cho T, Gilveray G, Looareesuwan S, White NJ, Nosten F (2003) The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria. Eur J Clin Pharmacol 59:545–552PubMedCrossRefGoogle Scholar
  5. 5.
    van Vugt M, Edstein MD, Proux S, Lay K, Ooh M, Looareesuwan S, White NJ, Nosten F (1999) Absence of an interaction between artesunate and atovaquone–proguanil. Eur J Clin Pharmacol 55:469–474PubMedCrossRefGoogle Scholar
  6. 6.
    Nosten F, van Vugt M, Price R, Luxemburger C, Thway KL, Brockman A, McGready R, ter Kuile F, Looareesuwan S, White NJ (2000) Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356:297–302PubMedCrossRefGoogle Scholar
  7. 7.
    Khanh NX, de Vries PJ, Ha LD, van Boxtel CJ, Koopmans R, Kager PA (1999) Declining concentrations of dihydroartemisinin in plasma during 5-day oral treatment with artesunate for Falciparum malaria. Antimicrob Agents Chemother 43:690–692PubMedGoogle Scholar
  8. 8.
    Hassan Alin M, Ashton M, Kihamia CM, Mtey GJ, Bjorkman A (1996) Multiple dose pharmacokinetics of oral artemisinin and comparison of its efficacy with that of oral artesunate in falciparum malaria patients. Trans R Soc Trop Med Hyg 90:61–65PubMedCrossRefGoogle Scholar
  9. 9.
    Rolan PE, Mercer AJ, Weatherley BC, Holdich T, Meire H, Peck RW, Ridout G, Posner J (1994) Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol 37:13–20PubMedGoogle Scholar
  10. 10.
    Na-Bangchang K, Congpuong K, Hung LN, Molunto P, Karbwang J (1998) Simple high-performance liquid chromatographic method with electrochemical detection for the simultaneous determination of artesunate and dihydroartemisinin in biological fluids. J Chromatogr B Biomed Sci Appl 708:201–207PubMedCrossRefGoogle Scholar
  11. 11.
    Navaratnam V, Mordi MN, Mansor SM (1997) Simultaneous determination of artesunic acid and dihydroartemisinin in blood plasma by high-performance liquid chromatography for application in clinical pharmacological studies. J Chromatogr B Biomed Sci Appl 692:157–162PubMedCrossRefGoogle Scholar
  12. 12.
    McGready R, Brockman A, Cho T, Cho D, van Vugt M, Luxemburger C, Chongsuphajaisiddhi T, White NJ, Nosten F (2000) Randomized comparison of mefloquine-artesunate versus quinine in the treatment of multidrug-resistant falciparum malaria in pregnancy. Trans R Soc Trop Med Hyg 94:689–693PubMedCrossRefGoogle Scholar
  13. 13.
    Hien TT, White NJ (1993) Qinghaosu. Lancet 341:603–608PubMedCrossRefGoogle Scholar
  14. 14.
    Nosten F, Luxemburger C, Ter KF, Woodrow C, Eh JP, Chongsuphajaisiddhi T, White NJ (1994) Treatment of multidrug-resistant Plasmodium falciparum malaria with 3- day artesunate-mefloquine combination. J Infect Dis 170:971–977PubMedGoogle Scholar
  15. 15.
    White N (1999) Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond B Biol Sci 354:739–749PubMedCrossRefGoogle Scholar
  16. 16.
    Assessment of the safety of artemisinin compounds in pregnancy (2003) World Health Organization WHO/CDS/MAL/2003.1094Google Scholar
  17. 17.
    Teja-Isavadharm P, Watt G, Eamsila C, Jongsakul K, Li Q, Keeratithakul G, Sirisopana N, Luesutthiviboon L, Brewer TG, Kyle DE (2001) Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg 65:717–721PubMedGoogle Scholar
  18. 18.
    Newton P, Suputtamongkol Y, Teja-Isavadharm P, Pukrittayakamee S, Navaratnam V, Bates I, White N (2000) Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrob Agents Chemother 44:972–977PubMedCrossRefGoogle Scholar
  19. 19.
    van Agtmael MA, Cheng-Qi S, Qing, JX, Mull R. van Boxtel CJ (1999) Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents 12:151–158PubMedCrossRefGoogle Scholar
  20. 20.
    Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M (2003) Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 74:32–43PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R. McGready
    • 1
    • 2
    • 3
  • K. Stepniewska
    • 2
    • 3
  • S. A. Ward
    • 4
  • T. Cho
    • 1
  • G. Gilveray
    • 1
  • S. Looareesuwan
    • 2
  • N. J. White
    • 2
    • 3
  • F. Nosten
    • 1
    • 2
    • 3
  1. 1.Shoklo Malaria Research UnitMae SotThailand
  2. 2.Faculty of Tropical MedicineMahidol UniversityBangkokThailand
  3. 3.Centre for Tropical Medicine and VaccinologyChurchill HospitalHeadingtonUK
  4. 4.Molecular and Biochemical ParasitologyLiverpool School of Tropical MedicinePembroke PlaceUK

Personalised recommendations