European Journal of Clinical Pharmacology

, Volume 61, Issue 8, pp 573–582

The pharmacokinetics and pharmacodynamics of atovaquone and proguanil for the treatment of uncomplicated falciparum malaria in third-trimester pregnant women

  • K. Na-Bangchang
  • C. Manyando
  • R. Ruengweerayut
  • D. Kioy
  • M. Mulenga
  • G. B. Miller
  • J. Konsil
Pharmacokinetics and Disposition

Abstract

OBJECTIVE: To investigate the pharmacokinetics, safety and efficacy of the recommended 3-day treatment regimen of Malarone in third-trimester pregnant women with acute uncomplicated falciparum malaria. METHODS: Twenty-six pregnant women in their third trimester (gestational age: 24–34 weeks) with acute uncomplicated Plasmodium falciparum malaria who fulfilled the enrollment criteria were recruited from the antenatal clinics of Mae Sot Hospital, Tak Province, Thailand, (n=8) and the Tropical Diseases Research Centre, Ndola, Zambia (n=18). Patients were treated with four Malarone tablets (GlaxoSmithKline: each tablet contains 250 mg atovaquone and 100 mg proguanil) once daily for 3 consecutive days. Blood samples were taken for pharmacokinetic investigations of atovaquone, proguanil, and cycloguanil up to 288 h (day 14) after the last dose. Urine samples were collected for the evaluation of proguanil and cycloguanil 0–8, 8–16, 16–24 and 24–48 h after the last dose. Efficacy assessments included the clinical and parasitological evaluation of mothers and newborns. Adverse events were evaluated at each visit to the antenatal clinics. RESULTS: Malarone appeared to be effective and well tolerated when used for the treatment of falciparum malaria in pregnant women. All patients showed prompt clinical improvement and the disappearance of parasitaemia after treatment. There were no serious adverse effects or unexpected adverse effects and no stillbirths or spontaneous abortions. The plasma concentration-time profiles of atovaquone and proguanil in most cases were best characterised by the two-compartment open model with zero-order input with/without absorption lag time and first-order elimination. There were no significant differences in any of the pharmacokinetic parameters of atovaquone, proguanil or cycloguanil between patients from Thailand and Zambia. For atovaquone, a Cmax of 1.33–8.33 μg/ml was reached at 2.0–9.3 h after the last dose on day 2. V/F, CL/F and t1/2β were 6.9–39.5 l/kg, 83–384 ml/h/kg, and 57.8–130.8 h, respectively. The Cmax and tmax values for proguanil versus cycloguanil were 383–918 versus 0–129 ng/ml and 3.3–8.6 versus 3–12 h, respectively. V/F, CL/F, and t1/2β values for proguanil were 10.7–34.0 l/kg, 431–1,662 ml/h/kg and 11.2–30.3 h. The CLR-CG, t1/2z, CG, proguanil/cycloguanil metabolic ratios, AUC ratios for proguanil to cycloguanil (AUCPG/CG) were 107.2–1,001 ml/h/kg, 5–95 ml/h/kg, 7.8–20.7 h, 5–57, and 4.7–20.2, respectively. CONCLUSION: The pharmacokinetics of atovaquone and cycloguanil appeared to be influenced by the pregnancy status, resulting in an decrease in the Cmax and AUC of approximately twofold.

Keywords

Falciparum malaria Pregnancy Malarone Atovaquone Proguanil Cycloguanil 

References

  1. 1.
    Gillies HM, Lawson JB, Sibelas M (1969) Malaria, anaemia and pregnancy. Ann Trop Med Parasitol 63:245–263PubMedGoogle Scholar
  2. 2.
    Melendez C (1995) Malaria during pregnancy: a priority area of malaria research and control. Parasitol Today 11:178–183CrossRefPubMedGoogle Scholar
  3. 3.
    Walter PR, Garin Y, Blot P (1982) Placental pathologic changes in malaria: a histologic and ultrastructural study. Am J Pathol 109:330–342PubMedGoogle Scholar
  4. 4.
    McGregor LA, Wilson ME, Billewicz WZ (1983) Malaria infection of the placenta in the Gambia, West Africa; its incidence and relationship to stillbirth, birth weight and placental weight. Trans R Soc Trop Med Hyg 77:232–244CrossRefPubMedGoogle Scholar
  5. 5.
    Mvondo JL, James MA, Cambell CC (1992) Malaria and pregnancy in Cameroonian women. Effect of pregnancy on Plasmodium falciparum parasitaemia and the response to chloroquine. Trop Med Parasitol 43:1–5PubMedGoogle Scholar
  6. 6.
    Egwunyenga OA, Ajayi JA, Popova-Duhlinska DD, Nmorsi OP (1996) Malaria infection of the cord and birth weights in Nigerians. Cent Afr J Med 42:265–268PubMedGoogle Scholar
  7. 7.
    Steketee RW, Wirama JJ, Slusker L, Khoromana CO, Heymann DL, Breman JG (1996) Malaria treatment and prevention in pregnancy: indications for use and adverse events associated with use of chloroquine or mefloquine. Am J Trop Med Hyg 55:50–56PubMedGoogle Scholar
  8. 8.
    Karbwang J, Harinasuta T (1992) Distribution of drug resistance. In: Karbwang J, Harinasuta T (eds) Chemotherapy of malaria in Southeast Asia. Roumtassana, Bangkok, pp 47–72Google Scholar
  9. 9.
    McGready R, Brockman A, Cho T, Cho D, van Vugt M, Luxemburger C, Chongsuphajaisiddhi T, White NJ, Nosten F (2000) Randomised comparison of mefloquine-artesunate combination versus quinine in treatment of multi-drug resistant falciparum malaria in pregnancy. Trans R Soc Trop Med Hyg 94:689–693CrossRefPubMedGoogle Scholar
  10. 10.
    Nosten F, Vincenti M, Simpson J, Yei P, Thwai KL, de Vries A, Chongsuphajaisiddhi T, White NJ (1999) The effects of mefloquine treatment in pregnancy. Clin Infect Dis 28:808–815PubMedGoogle Scholar
  11. 11.
    Smoak BL, Writer JV, Keep LW, Cowan J, Chantelois JL (1997) The effect of inadvertent exposure of mefloquine chemoprophylaxis on pregnancy outcomes and infants of US Army service women. J Infect Dis 176:831–833PubMedGoogle Scholar
  12. 12.
    Phillips-Howard PA, Steffen R, Kerr L (1999) Safety of mefloquine and other antimalarial agents in the first trimester of pregnancy. J Travel Med 77:141–150Google Scholar
  13. 13.
    McGready R, Cho T, Khan Keo N, Thwai KL, Villegas L, Looareesuwan S, White NJ, Nosten F (2001) Artemisinin antimalarials in pregnancy: a perspective treatment study of 539 episodes of multi-drug resistant Plasmodium falciparum. Clin Infect Dis 33:2009–2016CrossRefPubMedGoogle Scholar
  14. 14.
    McGready R, Cho T, Cho JJ, Simpson JA, Luxemburger C, Dubowtz L, Looareesuwan S, White NJ, Nosten F (1998) Artemisinin derivatives in the treatment of falciparum malaria in pregnancy. Trans R Soc Trop Med Hyg 92:430–433CrossRefPubMedGoogle Scholar
  15. 15.
    Canfield CJ, Pudney M, Gutteridge WE (1995) Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol 80:373–381CrossRefPubMedGoogle Scholar
  16. 16.
    Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Canfield CJ (1996) Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg 54:62–66PubMedGoogle Scholar
  17. 17.
    Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG (1996) Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet 347:1511–1514CrossRefPubMedGoogle Scholar
  18. 18.
    Bustos DG, Canfield CJ, Canete-Miguel E, Hutchinson DB (1999) Atovaquone–proguanil compared with chloroquine and chloroquine-sulfadoxine-pyrimethamine for treatment of acute Plasmodium falciparum malaria in the Philippines. J Infect Dis 179(6):1587–1590CrossRefPubMedGoogle Scholar
  19. 19.
    de Alencar FE, Ceruti C Jr, Durlacher RR, Boulos M, Alves FP, Milhous W, Plang LW (1997) Atovaquone and proguanil for the treatment of malaria in Brazil. J Infect Dis 175(6):1544–1547PubMedGoogle Scholar
  20. 20.
    Looareesuwan S, Chulay JD, Canfiel CJ, Hutchinson DB (1999) Malarone® (atovaquone/proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone® Clinical Trials Study Group. Am J Trop Med Hyg 60(4):533–541PubMedGoogle Scholar
  21. 21.
    Mulenga M, Canfield CJ, Hutchinson DB (1999) Atovaquone and proguanil versus pyrimethamine/sulfadoxine for the treatment of acute falciparum amalria in Zambia. Clin Ther 21:841–852CrossRefPubMedGoogle Scholar
  22. 22.
    Bormann S, Faucher JF, Bagaphou T, Missinou MA, Binder RK, Pabisch S, Rezbach P, Matsiegui PB, Lell B. Miller G, Kremsner PG (2003) Atovaquone and proguanil versus amodiaquine for the treatment of Plasmodium falciparum malaria in African infants and young children. Clin Infect Dis 37:1441–1447CrossRefPubMedGoogle Scholar
  23. 23.
    Sabchareon A, Attanath P, Phanuaksook P, Chanthavanich P, Poonpanich Y, Mookmanee D, Chongsuphajaisiddhi T, Sadler BM, Hussein Z, Canfield CJ, Hutchinson DB (1998) Efficacy and pharmacokinetics of atovaquone and proguanil in children with multidrug-resistant Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 92(2):201–206CrossRefPubMedGoogle Scholar
  24. 24.
    Hussein Z, Eaves CJ, Hutchinson DB, Canfield CJ (1996) Population pharmacokinetics of proguanil in patients with acute P. falciparum malaria after combined therapy with atovaquone. Br J Clin Pharmacol 42:589–597PubMedGoogle Scholar
  25. 25.
    Hussein Z, Eaves J, Hutchinson DB, Canfield CJ (1997) Population pharmacokinetics of atovaquone in patients with acute malaria caused by Plasmodium falciparum. Clin Pharmacol Ther 61:518–530CrossRefPubMedGoogle Scholar
  26. 26.
    McGready R, Stepniewska K, Edstein MD, Cho T, Gilveray G, Looareesuwan S, White NJ, Nosten F (2003) The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria. Eur J Clin Pharmacol 59:545–552CrossRefPubMedGoogle Scholar
  27. 27.
    Funck-Brentano C, Becquemont L, Lenevu A, roux A, Jailon P, Beaune P (1997) Inhibition by omeprazole of proguanil metabolism mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther 280:730–738PubMedGoogle Scholar
  28. 28.
    Al-Waili NS (1998) Praziquantel for treatment of malaria. J Pak Med Assoc 48(12):378–379.PubMedGoogle Scholar
  29. 29.
    Lelijveld J, Kortmann H (1970) The eosin colour test of Dill and Glazko: a simple field test to detect chloroquine in urine. Bull World Health Organ 42(3):477–479PubMedGoogle Scholar
  30. 30.
    de Almeida-Filho J, de Souza JM (1983) A simple urine test for sulfonamides. Bull World Health Organ 61(1):167–168PubMedGoogle Scholar
  31. 31.
    Dubowitz LMS, Dubowitz V, Goldberg G (1970) Clinical assessment of gestational age in the newborn infant. J Paediatr 77:1–10Google Scholar
  32. 32.
    World Health Organisation, Division of Control of Tropical Diseases (1996) Assessment of therapeutic efficacy of antimalarial drugs for uncomplicated malaria in areas with intense transmission. WHO/MAL/96.1077 (unpublished document), GenevaGoogle Scholar
  33. 33.
    Cancer Therapy Evaluation Program (1998) Common toxicity criteria, version 2.0. DCTD, NCI, NIH, DHHSGoogle Scholar
  34. 34.
    Taylor RB, Moody RR, Ochekpe NA (1987) Determination of proguanil and its metabolites cycloguanil and 4-chlorophenylbiguanide in plasma, whold blood and urine by high performance liquid chromatography. J Chromatogr 416:394–399PubMedGoogle Scholar
  35. 35.
    de Angelis DV, Long JD, Kanics LL, Woolley JL (1994) High performance liquid chromatography assay for the measurement of atovaquone in plasma. J Chromatogr 652(2):211–219PubMedGoogle Scholar
  36. 36.
    d’Argenio DZ, Schumitzky A (2003) adaptT II, release 4.0, Pharmacokinetic/pharmacodynamic system analysis software, University of Southern California, February; http://www.bmsr.usc.edu
  37. 37.
    Innaphase Corporation, kinetica 2000®, version 3.0, http://www.innaphase.com
  38. 38.
    Helsby NA, Ward SA, Edwards G et al (1990) The pharmacokinetics and activation of proguanil in man: consequences of variability in drug metabolism. Br J Clin Pharmacol 30:593–598PubMedGoogle Scholar
  39. 39.
    Rolan PE, Mereer AJ, Tate E, Benjamin I. Posner J (1997) Disposition of atovaquone in humans. Antimicrob Agents Chemother 41:1319–1321PubMedGoogle Scholar
  40. 40.
    Hudson AT, Dickins M, Ginger CD, Gutterridge WE, Holdich T, Hutchinson DBA, Pudney M, Randall AW, Latter VS (1991) 566c80 a potent broad spectrum anti-infective agent with activity against malaria and opportunistic infections with AIDs. Drugs Exp Clin Res 17:427–435PubMedGoogle Scholar
  41. 41.
    Ripa S, Ferranate L, Mignini F, Ecari U, Ruffilli MP (1988) Pharmacokinetics of bacampicillin using a compartment model with zero-order absorption. Chemotherapy 34:85–89PubMedGoogle Scholar
  42. 42.
    Yu DK, Hutcheson SI, Wei G, Bhargava VO, Weir SJ (1994) A comparison of population and standard two-stage pharmacokinetic analyses of vigabatrin data. Biopharm Drug Dispos 15:473–484PubMedGoogle Scholar
  43. 43.
    Ripa S, Ferranate L, Prenma M (1996) A linear model for the pharmacokinetics of azithromycin in healthy volunteers. Chemotherapy 42:402–409PubMedGoogle Scholar
  44. 44.
    Smith CC, Ihrig J, Menne R (1961) Antimalarial activity and metabolism of biguanides 1. Metabolism of chloroguanide and chloroguanide triazine in rhesus monkeys and man. Am J Trop Med Hyg 10:694–703Google Scholar
  45. 45.
    Ward SA, Watkins WM, Mberu E, Saunders JE, Koech DK, Gilles HM, Howells RE, Breckenridge AM (1989) Inter-subject variability in the metabolism of proguanil to the active metabolite cycloguanil in man. Br J Clin Pharmacol 27:781–787PubMedGoogle Scholar
  46. 46.
    McGready R, Stepniewska K, Seaton E, Cho T, Cho D, Ginsburg A, Edstein MD, Ashley E, Looareesuwan S, White NJ, Nosten F (2003) Pregnancy and use of oral contraceptive reduces the biotransformation of proguanil to cycloguanil. Eur J Clin Pharmacol 59:553–557CrossRefPubMedGoogle Scholar
  47. 47.
    Wedlund PJ, Alasnian WS, McAllister CB, Wilkinson GR, Branch RA (1984) Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new oxidative drug metabolism polymorphism. Clin Pharmacol Ther 36:773–780PubMedGoogle Scholar
  48. 48.
    Nakamura K, Goto F, Ray WA, McAlister CB, Jacqz E (1985) Inter-ethnic differences in genetic polymorphism of debrisoquine and mephenytoin hydroxylation in Japanese and Caucasian population. Clin Pharmacol Ther 38:402–408PubMedGoogle Scholar
  49. 49.
    Watkins WM, Mberu EK, Nevill CG, Ward SA, Breckenridge AM, Koech DK (1990) Variability in the metabolism of proguanil to its active metabolite cycloguanil in healthy Kenyan adults. Trans R Soc Trop Med Hyg 84:492–495CrossRefPubMedGoogle Scholar
  50. 50.
    Setiabudy R, Kusaka M, Chiba K, Darmansjah I, Ishizaki T (1995) Metabolic disposition of proguanil in extensive and poor metabolisers of S-mephenytoin 4′-hydroxylation recruited from an Indonesian population. Br J Clin Pharmacol 39:297–303PubMedGoogle Scholar
  51. 51.
    Edstein MD, Yeo AE, Kyle DE, Looareesuwan S, Wilairatana P, Rieckmann KH (1996) Proguanil polymorphism does not affect the antimalarial activity of proguanil combined with atovaquone in vitro. Trans R Soc Trop Med Hyg 90(4):418–421CrossRefPubMedGoogle Scholar
  52. 52.
    Jones K, Ward SA (2002) Biguanide–atovaquone synergy against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 46:2700–2703CrossRefPubMedGoogle Scholar
  53. 53.
    van Vugt M, Edstein MD, Proux S, Lay K, Ooh M, Looareesuwan S, White NJ, Nosten F (1999) Absence of an interaction between artesunate and atovaquone–proguanil. Eur J Clin Pharmacol 55:469–474CrossRefPubMedGoogle Scholar
  54. 54.
    Wangboonskul J, White NJ, Nosten F et al (1993) Single dose pharmacokinetics of proguanil and its metabolites in pregnancy. Eur J Clin Pharmacol 44:247–251CrossRefPubMedGoogle Scholar
  55. 55.
    Wattanagoon Y, Taylor RB, Moody RR, Ockekpe NA, Looareesuwan S, White NJ (1993) Single dose pharmacokinetics of proguanil and its metabolites in healthy subjects. Br J Clin Pharmacol 24(6):775–780Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • K. Na-Bangchang
    • 1
  • C. Manyando
    • 2
  • R. Ruengweerayut
    • 3
  • D. Kioy
    • 4
  • M. Mulenga
    • 2
  • G. B. Miller
    • 5
  • J. Konsil
    • 6
  1. 1.Pharmacology and Toxicology Unit, Faculty of Allied Health SciencesThammasat University (Rangsit Campus)Thailand
  2. 2.Tropical Diseases Research CentreNdolaZambia
  3. 3.Mae Sot HospitalTak ProvinceThailand
  4. 4.UNICEF-UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR)World Health OrganisationGenevaSwitzerland
  5. 5.GlaxoSmithKline Research & DevelopmentResearch Triangle ParkUSA
  6. 6.Faculty of Pharmaceutical SciencesKhonkaen UniversityKhonkaenThailand

Personalised recommendations