European Journal of Clinical Pharmacology

, Volume 62, Issue 4, pp 267–275 | Cite as

Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea

  • Rajeev K. Mehlotra
  • Mark N. Ziats
  • Moses J. Bockarie
  • Peter A. Zimmerman



Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of artemisinin drugs, a novel series of antimalarials. Our aim was to analyze the prevalence of the most commonly observed CYP2B6 alleles in malaria-endemic populations of West Africa (WA) and Papua New Guinea (PNG).


Using a post-PCR ligation detection reaction-fluorescent microsphere assay, frequencies of CYP2B6*1A, *2, *3, *4, *5, *6, *7, and *9 were determined in WA (n=166) and PNG (n=174). To compare with the results of previous studies, we also determined the allele frequencies in 291 North Americans of various ethnic groups.


Significant differences were observed between WA and PNG for the frequencies of alleles CYP2B6*1A (45% vs 33%, P = 0.003), *2 (4% vs. 0%, P<0.001), *6 (42% vs 62%, P<0.001), and *9 (8% vs 1%, P<0.001), and genotypes *1A/*9 (9% vs 0%, P<0.001) and *6/*6 (17% vs 43%, P<0.001). The frequencies of CYP2B6 genotypes in the populations were in Hardy-Weinberg equilibrium, except for PNG where an overall significant deficit of heterozygosity was observed (H O=0.431, H E=0.505, P=0.004). The allele frequencies in Asian-Americans and Caucasians-Americans were comparable to those documented for Japanese and Caucasian populations.


CYP2B6 variants, previously shown to affect metabolism of a variety of drugs, occur in WA and PNG, and there are significant genetic differences at the CYP2B6 locus in these populations. It may be important to determine if these differences alter the efficacy of artemisinin drugs.


Artemisinin CYP2B6 alleles Malaria Papua New Guinea West Africa 



We are thankful to Dr. Charles King, Dr. Keith Armitage, Dr. Carolyn Myers, Dr. Mohammed Orloff, Mr. David McNamara, and Mr. Shannon Bruse for their comments on the manuscript. This work was supported by a grant (AI-52312) from National Institutes of Health to P.A.Z. R.K.M. was supported by Fogarty International Center and in part by a grant (AI-36478) from National Institutes of Health. The experiments comply with the current laws, inclusive of ethics approval, of the United States of America.

Supplementary material

228_2005_92_MOESM1_ESM.pdf (42 kb)
(PDF 43 kb)
228_2005_92_MOESM2_ESM.pdf (40 kb)
(PDF 41 kb)


  1. 1.
    Erickson DA, Mather G, Trager WF, Levy RH, Keirns JJ (1999) Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 27:1488–1495PubMedGoogle Scholar
  2. 2.
    Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z (2003) The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306:287–300CrossRefPubMedGoogle Scholar
  3. 3.
    Svensson US, Ashton M (1999) Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48:528–535CrossRefPubMedGoogle Scholar
  4. 4.
    Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM (2003) Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59:429–442CrossRefPubMedGoogle Scholar
  5. 5.
    Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M (2003) Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 74:32–43CrossRefPubMedGoogle Scholar
  6. 6.
    Grace JM, Aguilar AJ, Trotman KM, Peggins JO, Brewer TG (1998) Metabolism of beta-arteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450. Drug Metab Dispos 26:313–317PubMedGoogle Scholar
  7. 7.
    Price RN (2000) Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs 9:1815–1827CrossRefPubMedGoogle Scholar
  8. 8.
    Balint GA (2001) Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol Ther 90:261–265CrossRefPubMedGoogle Scholar
  9. 9.
    White NJ (1994) Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 88:S41–S43CrossRefPubMedGoogle Scholar
  10. 10.
    Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, Thu le TA, Hung NC, Pirmohamed M, Park BK, Edwards G (2002) Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 30:1005–1012CrossRefPubMedGoogle Scholar
  11. 11.
    Hien TT, White NJ (1993) Qinghaosu. Lancet 341:603–608CrossRefPubMedGoogle Scholar
  12. 12.
    Gordi T, Lepist EI (2004) Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett 147:99–107CrossRefPubMedGoogle Scholar
  13. 13.
    Menard D, Matsika-Claquin MD, Djalle D, Yapou F, Manirakiza A, Dolmazon V, Sarda J, Talarmin A (2005) Association of failures of seven-day courses of artesunate in a non-immune population in Bangui, Central African Republic, with decreased sensitivity of Plasmodium falciparum. Am J Trop Med Hyg 73:616–621PubMedGoogle Scholar
  14. 14.
    Olliaro PL, Taylor WR (2004) Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review. J Postgrad Med 50:40–44PubMedGoogle Scholar
  15. 15.
    Garner P, Graves PM (2005) The benefits of artemisinin combination therapy for malaria extend beyond the individual patient. PLoS Med 2:e105CrossRefPubMedGoogle Scholar
  16. 16.
    Mutabingwa TK (2005) Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop 95:305–315CrossRefPubMedGoogle Scholar
  17. 17.
    Ekins S, Vandenbranden M, Ring BJ, Gillespie JS, Yang TJ, Gelboin HV, Wrighton SA (1998) Further characterization of the expression in liver and catalytic activity of CYP2B6. J Pharmacol Exp Ther 286:1253–1259PubMedGoogle Scholar
  18. 18.
    Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415CrossRefPubMedGoogle Scholar
  19. 19.
    Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:89–104CrossRefPubMedGoogle Scholar
  20. 20.
    Miles JS, Spurr NK, Gough AC, Jowett T, McLaren AW, Brook JD, Wolf CR (1998) A novel human cytochrome P450 gene (P450IIB): chromosomal localization and evidence for alternative splicing. Nucleic Acids Res 16:5783–5795CrossRefGoogle Scholar
  21. 21.
    Yamano S, Nhamburo PT, Aoyama T, Meyer UA, Inaba T, Kalow W, Gelboin HV, McBride OW, Gonzalez FJ (1989) cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry 28:7340–7348CrossRefPubMedGoogle Scholar
  22. 22.
    Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42PubMedCrossRefGoogle Scholar
  23. 23.
    Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 307:906–922CrossRefPubMedGoogle Scholar
  24. 24.
    Hiratsuka M, Takekuma Y, Endo N, Narahara K, Hamdy SI, Kishikawa Y, Matsuura M, Agatsuma Y, Inoue T, Mizugaki M (2002) Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 58:417–421CrossRefPubMedGoogle Scholar
  25. 25.
    Lang T, Klein K, Richter T, Zibat A, Kerb R, Eichelbaum M, Schwab M, Zanger UM (2004) Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J Pharmacol Exp Ther 311:34–43CrossRefPubMedGoogle Scholar
  26. 26.
    Hiratsuka M, Hinai Y, Konno Y, Nozawa H, Konno S, Mizugaki M (2004) Three novel single nucleotide polymorphisms (SNPs) of the CYP2B6 gene in Japanese individuals. Drug Metab Pharmacokinet 19:155–158CrossRefPubMedGoogle Scholar
  27. 27.
    Hesse LM, He P, Krishnaswamy S, Hao Q, Hogan K, von Moltke LL, Greenblatt DJ, Court MH (2004) Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 14:225–238CrossRefPubMedGoogle Scholar
  28. 28.
    Cho JY, Lim HS, Chung JY, Yu KS, Kim JR, Shin SG, Jang IJ (2004) Haplotype structure and allele frequencies of CYP2B6 in a Korean population. Drug Metab Dispos 32:1341–1344CrossRefPubMedGoogle Scholar
  29. 29.
    Zukunft J, Lang T, Richter T, Hirsch-Ernst KI, Nussler AK, Klein K, Schwab M, Eichelbaum M, Zanger UM (2005) A natural CYP2B6 TATA box-polymorphism (−82T>C) leading to enhanced transcription and relocation of the transcriptional start site. Mol Pharmacol 67:1772–1782CrossRefPubMedGoogle Scholar
  30. 30.
    Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligase-mediated gene detection technique. Science 241:1077–1080PubMedCrossRefGoogle Scholar
  31. 31.
    Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39:131–140CrossRefPubMedGoogle Scholar
  32. 32.
    Pickering JW, McMillin GA, Gedge F, Hill HR, Lyon E (2004) Flow cytometric assay for genotyping cytochrome P450 2C9 and 2C19: comparison with a microelectronic DNA array. Am J Pharmacogenomics 4:199–207CrossRefPubMedGoogle Scholar
  33. 33.
    Zimmerman PA, Dadzie KY, De Sole G, Remme J, Alley ES, Unnasch TR (1992) Onchocerca volvulus DNA probe classification correlates with epidemiologic patterns of blindness. J Infect Dis 165:964–968PubMedGoogle Scholar
  34. 34.
    Mehlotra RK, Kasehagen LJ, Baisor M, Lorry K, Kazura JW, Bockarie MJ, Zimmerman PA (2002) Malaria infections are randomly distributed in diverse holoendemic areas of Papua New Guinea. Am J Trop Med Hyg 67:555–562PubMedGoogle Scholar
  35. 35.
    Zimmerman PA, Woolley I, Masinde GL, Miller SM, McNamara DT, Hazlett F, Mgone CS, Alpers MP, Genton B, Boatin BA, Kazura JW (1999) Emergence of FY*A(null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc Natl Acad Sci USA 96:13973–13977CrossRefPubMedGoogle Scholar
  36. 36.
    Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98CrossRefPubMedGoogle Scholar
  37. 37.
    Kayser M, Brauer S, Weiss G, Schiefenhovel W, Underhill P, Shen P, Oefner P, Tommaseo-Ponzetta M, Stoneking M (2003) Reduced Y-chromosome, but not mitochondrial DNA, diversity in human populations from West New Guinea. Am J Hum Genet 72:281–302CrossRefPubMedGoogle Scholar
  38. 38.
    Cavaco I, Stromberg-Norklit J, Kaneko A, Msellem MI, Dahoma M, Ribeiro VL, Bjorkman A, Gil JP (2005) CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur J Clin Pharmacol 61:15–18CrossRefPubMedGoogle Scholar
  39. 39.
    Solus JF, Arietta BJ, Harris JR, Sexton DP, Steward JQ, McMunn C, Ihrie P, Mehall JM, Edwards TL, Dawson EP (2004) Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 5:895–931CrossRefPubMedGoogle Scholar
  40. 40.
    Ariyoshi N, Miyazaki M, Toide K, Sawamura Yi, Kamataki T (2001) A single nucleotide polymorphism of CYP2B6 found in Japanese enhances catalytic activity by autoactivation. Biochem Biophys Res Commun 281:1256–1260CrossRefPubMedGoogle Scholar
  41. 41.
    Iwasaki M, Yoshimura Y, Asahi S, Saito K, Sakai S, Morita S, Takenaka O, Inoda T, Kashiyama E, Aoyama A, Nakabayashi T, Omori S, Kuwabara T, Izumi T, Nakamura K, Takanaka K, Nakayama Y, Takeuchi M, Nakamura H, Kametani S, Terauchi Y, Hashizume T, Nagayama S, Kume T, Achira M, Kawai H, Kawashiro T, Nakamura A, Nakai Y, Kagayama A, Shiraga T, Niwa T, Yoshimura T, Morita J, Ohsawa F, Tani M, Osawa N, Ida K, Noguchi K (2004) Functional characterization of single nucleotide polymorphisms with amino acid substitution in CYP1A2, CYP2A6, and CYP2B6 found in the Japanese population. Drug Metab Pharmacokinet 19:444–452CrossRefPubMedGoogle Scholar
  42. 42.
    Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, Ando M (2003) Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos 31:398–403CrossRefPubMedGoogle Scholar
  43. 43.
    Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, Clifford DB, Hulgan T, Marzolini C, Acosta EP (2004) Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18:2391–2400PubMedGoogle Scholar
  44. 44.
    Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL, Keiser O, Biollaz J, Decosterd L, Telenti A; Swiss HIV Cohort Study (2005) Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 15:1–5PubMedGoogle Scholar
  45. 45.
    Rodriguez-Novoa S, Barreiro P, Rendon A, Jimenez-Nacher I, Gonzalez-Lahoz J, Soriano V (2005) Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin Infect Dis 40:1358–1361CrossRefPubMedGoogle Scholar
  46. 46.
    Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M, Kuwahara T, Shirasaka T, Kimura S, Oka S (2004) Homozygous CYP2B6*6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun 319:1322–1326CrossRefPubMedGoogle Scholar
  47. 47.
    Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15:71–75CrossRefPubMedGoogle Scholar
  48. 48.
    Hasse B, Gunthard HF, Bleiber G, Krause M (2005) Efavirenz intoxication due to slow hepatic metabolism. Clin Infect Dis 40:e22–e23CrossRefPubMedGoogle Scholar
  49. 49.
    Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A (2003) Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 3:53–61CrossRefPubMedGoogle Scholar
  50. 50.
    Kobayashi K, Morita J, Chiba K, Wanibuchi A, Kimura M, Irie S, Urae A, Ishizaki T (2004) Pharmacogenetic roles of CYP2C19 and CYP2B6 in the metabolism of R- and S-mephobarbital in humans. Pharmacogenetics 14:549–556CrossRefPubMedGoogle Scholar
  51. 51.
    Teja-Isavadharm P, Watt G, Eamsila C, Jongsakul K, Li Q, Keeratithakul G, Sirisopana N, Luesutthiviboon L, Brewer TG, Kyle DE (2001) Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg 65:717–721PubMedGoogle Scholar
  52. 52.
    Karunajeewa HA, Ilett KF, Dufall K, Kemiki A, Bockarie M, Alpers MP, Barrett PH, Vicini P, Davis TM (2004) Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother 48:2966–2972CrossRefPubMedGoogle Scholar
  53. 53.
    Hien TT, Davis TM, Chuong LV, Ilett KF, Sinh DX, Phu NH, Agus C, Chiswell GM, White NJ, Farrar J (2004) Comparative pharmacokinetics of intramuscular artesunate and artemether in patients with severe falciparum malaria. Antimicrob Agents Chemother 48:4234–4239CrossRefPubMedGoogle Scholar
  54. 54.
    Dien TK, de Vries PJ, Khanh NX, Koopmans R, Binh LN, Duc DD, Kager PA, van Boxtel CJ (1997) Effect of food intake on pharmacokinetics of oral artemisinin in healthy Vietnamese subjects. Antimicrob Agents Chemother 41:1069–1072PubMedGoogle Scholar
  55. 55.
    Koopmans R, Duc DD, Kager PA, Khanh NX, Dien TK, de Vries PJ, van Boxtel CJ (1998) The pharmacokinetics of artemisinin suppositories in Vietnamese patients with malaria. Trans R Soc Trop Med Hyg 92:434–436CrossRefPubMedGoogle Scholar
  56. 56.
    Koopmans R, Ha LD, Duc DD, Dien TK, Kager PA, Khanh NX, van Boxtel CJ, De Vries PJ (1999) The pharmacokinetics of artemisinin after administration of two different suppositories to healthy Vietnamese subjects. Am J Trop Med Hyg 60:244–247PubMedGoogle Scholar
  57. 57.
    Halpaap B, Ndjave M, Paris M, Benakis A, Kremsner PG (1998) Plasma levels of artesunate and dihydroartemisinin in children with Plasmodium falciparum malaria in Gabon after administration of 50-milligram artesunate suppositories. Am J Trop Med Hyg 58:365–368PubMedGoogle Scholar
  58. 58.
    Krishna S, Planche T, Agbenyega T, Woodrow C, Agranoff D, Bedu-Addo G, Owusu-Ofori AK, Appiah JA, Ramanathan S, Mansor SM, Navaratnam V (2001) Bioavailability and preliminary clinical efficacy of intrarectal artesunate in Ghanaian children with moderate malaria. Antimicrob Agents Chemother 45:509–516CrossRefPubMedGoogle Scholar
  59. 59.
    Angus BJ, Thaiaporn I, Chanthapadith K, Suputtamongkol Y, White NJ (2002) Oral artesunate dose-response relationship in acute falciparum malaria. Antimicrob Agents Chemother 46:778–782CrossRefPubMedGoogle Scholar
  60. 60.
    Kim YR, Kuh HJ, Kim MY, Kim YS, Chung WC, Kim SI, Kang MW (2004) Pharmacokinetics of primaquine and carboxyprimaquine in Korean patients with vivax malaria. Arch Pharm Res 27:576–580PubMedCrossRefGoogle Scholar
  61. 61.
    Hombhanje FW, Hwaihwanje I, Tsukahara T, Saruwatari J, Nakagawa M, Osawa H, Paniu MM, Takahashi N, Lum JK, Aumora B, Masta A, Sapuri M, Kobayakawa T, Kaneko A, Ishizaki T (2005) The disposition of oral amodiaquine in Papua New Guinean children with falciparum malaria. Br J Clin Pharmacol 59:298–301CrossRefPubMedGoogle Scholar
  62. 62.
    Masta A, Lum JK, Tsukahara T, Hwaihwanje I, Kaneko A, Paniu MM, Sapuri M, Takahashi N, Ishizaki T, Kobayakawa T, Hombhanje FW (2003) Analysis of Sepik populations of Papua New Guinea suggests an increase of CYP2C19 null allele frequencies during the colonization of Melanesia. Pharmacogenetics 13:697–700CrossRefPubMedGoogle Scholar
  63. 63.
    Maruo Y, Iwai M, Mori A, Sato H, Takeuchi Y (2005) Polymorphism of UDP-glucuronosyltransferase and drug metabolism. Curr Drug Metab 6:91–99CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rajeev K. Mehlotra
    • 1
  • Mark N. Ziats
    • 1
  • Moses J. Bockarie
    • 2
  • Peter A. Zimmerman
    • 1
  1. 1.Center for Global Health and Diseases, School of MedicineCase Western Reserve UniversityClevelandUSA
  2. 2.Papua New Guinea Institute of Medical ResearchMadangPapua New Guinea

Personalised recommendations