Advertisement

European Journal of Clinical Pharmacology

, Volume 62, Supplement 1, pp 51–59 | Cite as

Circulating and excretory nitrite and nitrate as indicators of nitric oxide synthesis in humans: methods of analysis

  • Dimitrios Tsikas
  • Frank-Mathias Gutzki
  • Dirk O. Stichtenoth
Review Article

Abstract

Nitric oxide (NO) is produced in various cells from l-arginine by the catalytical action of NO synthases (NOS). The main metabolic fate of NO includes oxidation to nitrate by oxyhemoglobin in red blood cells and autoxidation to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in plasma, serum, and urine can be used to assess NO synthesis in humans. Circulating nitrite reflects constitutive endothelial NOS activity. Excretory nitrate indicates systemic NO production. Nitrite and nitrate can be measured in plasma, serum, and urine of humans by various analytical methods which are based on different analytical principles. These methods include colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis, and mass spectrometry. The present article gives an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human plasma, serum, and urine in the framework of clinical studies and discusses their significance.

Keywords

Nitric oxide Analysis Quality control 

Notes

Acknowledgements

The authors thank Prof. J. C. Frölich, the former Head and Director of the Institute of Clinical Pharmacology, for his invaluable support. The laboratory assistance of B. Beckmann, I. Fuchs, A. Mitschke and M.-T. Suchy is gratefully acknowledged.

References

  1. 1.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376PubMedCrossRefGoogle Scholar
  2. 2.
    Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  3. 3.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269PubMedCrossRefGoogle Scholar
  4. 4.
    Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988) l-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256PubMedCrossRefGoogle Scholar
  5. 5.
    Schmidt, HHHW, Nau H, Wittfoht W, Gerlach J, Prescher KE, Klein MM, Niroomand F, Böhme E (1988) Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol 154:213–216PubMedCrossRefGoogle Scholar
  6. 6.
    Hibbs JB Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476PubMedCrossRefGoogle Scholar
  7. 7.
    Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of l-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711PubMedCrossRefGoogle Scholar
  8. 8.
    Leaf CD, Wishnok JS, Tannenbaum, SR (1989) l-Arginine is a precursor for nitrate biosynthesis in humans. Biochem Biophys Res Commun 163:1032–1037PubMedCrossRefGoogle Scholar
  9. 9.
    Leaf CD, Wishnok JS, Hurley JP, Rosenblad WD, Fox JG, Tannenbaum SR (1990) Nitrate biosynthesis in rats, ferrets and humans. Precursor studies with l-arginine. Carcinogenesis 11:855–858PubMedCrossRefGoogle Scholar
  10. 10.
    Hibbs JB Jr, Westenfelder C, Taintor R, Vavrin Z, Kablitz C, Baranowski RL, Ward JH, Menlove RL, McMurry MP, Kushner JP, Samlowski WE (1992) Evidence for cytokine-inducible nitric oxide synthesis from l-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89:867–877PubMedCrossRefGoogle Scholar
  11. 11.
    Forte P, Copland M, Smith LM, Milne E, Sutherland J, Benjamin N (1997) Basal nitric oxide synthesis in essential hypertension. Lancet 349:837–842PubMedCrossRefGoogle Scholar
  12. 12.
    Katz SD, Khan T, Zeballos GA, Mathew L, Potharlanka P, Knecht M, Whelan J (1999) Decreased activity of the l-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation 99:2113–2117PubMedGoogle Scholar
  13. 13.
    Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131PubMedGoogle Scholar
  14. 14.
    Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234PubMedGoogle Scholar
  15. 15.
    Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43:521–531PubMedCrossRefGoogle Scholar
  16. 16.
    Vallance P, Leone A, Calver A, Collierr J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575PubMedCrossRefGoogle Scholar
  17. 17.
    Leiper J, Vallance P (2003) Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 43:542–548CrossRefGoogle Scholar
  18. 18.
    Ford PC, Wink DA, Standbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326:1–3PubMedCrossRefGoogle Scholar
  19. 19.
    Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176PubMedGoogle Scholar
  20. 20.
    Xia Y, Zweier JL (1997) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A 94:6954–6958PubMedCrossRefGoogle Scholar
  21. 21.
    Vásquez-Vivar J, Kalyanaraman B, Martásek P, Hogg N, Masters BSS, Karoui H, Tordo H, Pritchard KA (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 95:9220–9225PubMedCrossRefGoogle Scholar
  22. 22.
    Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18:195–199PubMedCrossRefGoogle Scholar
  23. 23.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Pfeiffer S, Gorren ACF, Schmidt K, Werner ER, Hansert B, Bole DS, Mayer B (1997) Metabolic fate of peroxynitrite in aqueous solution: reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry. J Biol Chem 272:3465–3470PubMedCrossRefGoogle Scholar
  25. 25.
    Kissner R, Koppenol W (2002) Product distribution of peroxynitrite decay as a function of pH, temperature, and concentration. J Am Chem Soc 124:234–239PubMedCrossRefGoogle Scholar
  26. 26.
    Herold S, Exner M, Nauser T (2001) Kinetic and mechanistic studies of the NO-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40:3385–3395PubMedCrossRefGoogle Scholar
  27. 27.
    Wennmalm Å, Benthin G, Petersson AS (1992) Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol 106:507–508PubMedGoogle Scholar
  28. 28.
    Wennmalm Å, Benthin G, Edlund A, Jungsten L, Kieler-Jensen N, Lundin S, Westfelt UN, Petersson AS, Waagstein F (1993) Metabolism and excretion of nitric oxide in humans: an experimental and clinical study. Circ Res 73:1121–1127PubMedGoogle Scholar
  29. 29.
    Tsikas D (2005) Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res 39:797–815PubMedCrossRefGoogle Scholar
  30. 30.
    Rhodes P, Leone AM, Francis PL, Struthers AD, Moncada S (1995) The l-arginine: nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun 209:590–596PubMedCrossRefGoogle Scholar
  31. 31.
    Tsikas D (2004) Measurement of nitric oxide synthase activity in vivo and in vitro by gas chromatography-mass spectrometry. Methods Mol Biol 279:81–104PubMedGoogle Scholar
  32. 32.
    Vallance P, Patton S, Bhagat K, MacAllister R, Radomski M, Moncada S, Malinski T (1995) Direct measurement of nitric oxide in human beings. Lancet 345:153–154CrossRefGoogle Scholar
  33. 33.
    Kelm M, Schrader J (1990) Control of coronary vascular tone by nitric oxide. Circ Res 66:1561–1575PubMedGoogle Scholar
  34. 34.
    Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S (1991) Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 181:852–857PubMedCrossRefGoogle Scholar
  35. 35.
    Bode-Böger SM, Böger RH, Löffler M, Tsikas D, Brabant G, Frölich JC (1999) l-arginine stimulates NO-dependent vasodilation in healthy humans: effect of somatostatin pretreatment. J Investig Med 47:43–50PubMedGoogle Scholar
  36. 36.
    Lauer T, Preik M, Rassaf T, Strauer BE, Deussen A, Feelisch M, Kelm M (2001) Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci U S A 98:12814–12819PubMedCrossRefGoogle Scholar
  37. 37.
    Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, Scheeren T, Gödecke A, Schrader J, Schulz R, Heusch G, Schaub GA, Bryan NS, Feelisch M, Kelm M (2003) Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med 35:790–796PubMedCrossRefGoogle Scholar
  38. 38.
    Kanno K, Hirata Y, Emori T, Ohta K, Egush S, Imai T, Marumo F (1992) l-Arginine infusion induces hypotension and diuresis/natriuresis with concomitant increased urinary excretion of nitrite/nitrate and cyclic GMP in humans. Clin Exp Pharmacol Physiol 19:619–625PubMedCrossRefGoogle Scholar
  39. 39.
    Bode-Böger SM, Böger RH, Creutzig A, Tsikas D, Gutzki FM, Alexander K, Frölich JC (1994) l-Arginine infusion decreases peripheral resistance and inhibits platelet aggregation in healthy subjects. Clin Sci 87:303–310PubMedGoogle Scholar
  40. 40.
    Borgonio A, Witte K, Stahrenberg R, Lemmer B (1999) Influence of circadian time, ageing, and hypertension on the urinary excretion of nitric oxide metabolites in rats. Mech Ageing Dev 111:23–37PubMedCrossRefGoogle Scholar
  41. 41.
    Bode-Böger SM, Böger RH, Kielstein JT, Löffler M, Schäffer J, Frölich JC (2000) Role of endogenous nitric oxide in circadian blood pressure regulation in healthy humans and in patients with hypertension or atherosclerosis. J Investig Med 48:125–132PubMedGoogle Scholar
  42. 42.
    Elherik K, Khan F, McLaren M, Kennedy G, Belch JJF (2002) Circadian variation in vascular tone and endothelial cell function in normal males. Clin Sci 102:547–552PubMedCrossRefGoogle Scholar
  43. 43.
    Tsikas D, Böger RH, Bode-Böger SM, Gutzki FM, Frölich JC (1994) Quantification of nitrite and nitrate in human urine and plasma as pentafluorobenzyl derivatives by gas chromatography-mass spectrometry using their 15N-labelled analogs. J Chromatogr B 661:185–191CrossRefGoogle Scholar
  44. 44.
    Keimer R, Stutzer FK, Tsikas D, Troost R, Gutzki FM, Frölich JC (2003) Lack of oxidative stress during sustained therapy with isosorbide dinitrate and pentaerythrityl tetranitrate in healthy humans: a randomized, double-blind crossover study. J Cardiovasc Pharmacol 41:284–292PubMedCrossRefGoogle Scholar
  45. 45.
    Ellis G, Adatia I, Yazdanpanah M, Makela SK (1998) Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin Biochem 31:195–220PubMedCrossRefGoogle Scholar
  46. 46.
    Tsikas D (2005) Analysis of the l-arginine/nitric oxide pathway: the unique role of mass spectrometry. Curr Pharmaceut Anal 1:15–30CrossRefGoogle Scholar
  47. 47.
    Leone AM, Francis PL, Rhodes P, Moncada S (1994) A rapid and simple method for the measurement of nitrite and nitrate in plasma by high-performance capillary electrophoresis. Biochem Biophys Res Commun 200:951–957PubMedCrossRefGoogle Scholar
  48. 48.
    Ueda T, Maekawa T, Sadamitsu D, Oshita S, Ogino K, Nakamura K (1995) The determination of nitrite and nitrate in human blood plasma by capillary zone electrophoresis. Electrophoresis 16:1002–1004PubMedCrossRefGoogle Scholar
  49. 49.
    Farell AJ, Blake DR, Palmer RMJ, Moncada S (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis 51:1219–1222Google Scholar
  50. 50.
    Yang BK, Vivas EX, Reiter CD, Gladwin MT (2003) Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic Res 37:1–10PubMedCrossRefGoogle Scholar
  51. 51.
    Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214:11–16PubMedCrossRefGoogle Scholar
  52. 52.
    Marzinzig M, Nussler AK, Stadler J, Marzinzig E, Barthlen W, Nussler NC, Berger HG, Morris SM, Brückner UB (1997) Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide 1:177–189PubMedCrossRefGoogle Scholar
  53. 53.
    Tesch JW, Rehg WR, Sievers RE (1976) Microdetermination of nitrates and nitrites in saliva, blood, water, and suspended particulates in air by gas chromatography. J Chromatogr 126:743–755PubMedCrossRefGoogle Scholar
  54. 54.
    Bode-Böger SM, Böger RH, Schröder EP, Frölich JC (1994) Exercise increases systemic nitric oxide production in men. J Cardiovasc Risk 1:173–178PubMedGoogle Scholar
  55. 55.
    Smythe GA, Matanovic G, Yi D, Duncan MW (1999) Trifluoroacetic anhydride-catalyzed nitration of toluene as an approach to the specific analysis of nitrate by gas chromatography-mass spectrometry. Nitric Oxide 3:67–74PubMedCrossRefGoogle Scholar
  56. 56.
    Tsikas D, Gutzki FM, Sandmann J, Schwedhelm E, Frölich JC (1999) Quantification of plasma and urinary nitrate after its reduction to nitrite and to the pentafluorobenzyl derivative by gas chromatography-tandem mass spectrometry. J Chromatogr B 731:285–301CrossRefGoogle Scholar
  57. 57.
    Tsikas D (2000) Simultaneous derivatization and quantification of the nitric oxide metabolites nitrite and nitrate in biological fluids by gas chromatography-mass spectrometry. Anal Chem 72:4064–4072PubMedCrossRefGoogle Scholar
  58. 58.
    Green LC, Wagner DA, Glokowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N]nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  59. 59.
    Radomski JL, Palmiri C, Heran WL (1978) Concentrations of nitrate in normal human urine and the effect of nitrate ingestion. Toxicol Appl Pharmacol 45:63–68PubMedCrossRefGoogle Scholar
  60. 60.
    Moshage H, Kok B, Huizenga JR, Jansen PLM (1995) Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41:892–896PubMedGoogle Scholar
  61. 61.
    El Menyawi I, Looareesuwan S, Knapp S, Thalhammer F, Stoiser B, Burgmann H (1998) Measurement of serum nitrite/nitrate concentrations using high-performance liquid chromatography. J Chromatogr B 706:347–351CrossRefGoogle Scholar
  62. 62.
    Tsikas D, Rossa S, Sandmann J, Frölich JC (1999) High-performance liquid chromatographic analysis of nitrite and nitrate in human plasma as S-nitroso-N-acetylcysteine with ultraviolet absorbance detection. J Chromatogr B 724:199–201CrossRefGoogle Scholar
  63. 63.
    Tsikas D (2004) Mass spectrometry-validated HPLC method for urinary nitrate. Clin Chem 50:1259–1261PubMedCrossRefGoogle Scholar
  64. 64.
    Li H, Meininger CJ, Wu G (2000) Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B 746:199–207CrossRefGoogle Scholar
  65. 65.
    Preik-Steinhoff H, Kelm M (1996) Determination of nitrite in human blood by combination of a specific sample preparation with high-performance anion-exchange chromatography and electrochemical detection. J Chromatogr B 685:348–352CrossRefGoogle Scholar
  66. 66.
    Pinto PCAG, Lima JLFC, de Sousa Saraiva MLMF (2003) Sequential injection analysis of nitrites and nitrates in human serum using nitrate reductase. Clin Chim Acta 337:69–76PubMedCrossRefGoogle Scholar
  67. 67.
    Tsikas D, Gutzki FM, Rossa S, Bauer H, Neumann C, Dockendorff K, Sandmann J, Frölich JC (1997) Measurement of nitrite and nitrate in biological fluids by gas chromatography-mass spectrometry and by the Griess assay: problems with the Griess assay—solutions by gas chromatography-mass spectrometry. Anal Biochem 244:208–220PubMedCrossRefGoogle Scholar
  68. 68.
    Smith CCT, Stanyer L, Betteridge DJ (2002) Evaluation of methods for the extraction of nitrite and nitrate in biological fluids employing high-performance anion-exchange liquid chromatography for their determination. J Chromatogr B 779:201–209CrossRefGoogle Scholar
  69. 69.
    Ricart-Jané D, Llobera M, López-Tejero MD (2002) Anticoagulants and other preanalytical factors interfere in plasma nitrate/nitrite quantification by the Griess method. Nitric Oxide 6:178–185PubMedCrossRefGoogle Scholar
  70. 70.
    Verdon CP, Burton BA, Prior RL (1995) Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interferences by NADP+ when the Griess reaction is used to assay for nitrite. Anal Biochem 224:502–508PubMedCrossRefGoogle Scholar
  71. 71.
    Dunphy MJ, Goble DD, Smith DJ (1990) Nitrate analysis by capillary gas chromatography. Anal Biochem 184:381–387PubMedCrossRefGoogle Scholar
  72. 72.
    Gutzki FM, Tsikas D, Alheid U, Frölich JC (1992) Determination of endothelium-derived nitrite/nitrate by gas chromatography/tandem mass spectrometry using (15N)NaNO2 as internal standard. Biol Mass Spectrom 21:97–102PubMedCrossRefGoogle Scholar
  73. 73.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  74. 74.
    Porter AMW (1999) Misuse of correlation and regression in three medical journals. J R Soc Med 92:123–128PubMedGoogle Scholar
  75. 75.
    Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, Layloff T, Viswanathan CT, Cook CE, McDowall RD, Pittmann KA, Spector S (1992) Analytical methods validation—bioavailability, bioequivalence, and pharmacokinetic studies. J Pharm Sci 81:309–312CrossRefGoogle Scholar
  76. 76.
    Becker AJ, Ückert S, Tsikas D, Noack H, Stief CG, Frölich JC, Wolf G, Jonas U (2000) Determination of nitric oxide metabolites by means of the Griess assay and gas chromatography-mass spectrometry in the cavernous and systemic blood of healthy males and patients with erectile dysfunction during different functional conditions of the penis. Urol Res 28:364–369PubMedCrossRefGoogle Scholar
  77. 77.
    Heckmann M, Kreuder J, Riechers K, Tsikas D, Boedeker RH, Reiss I, Gortner L (2004) Plasma arginine and urinary nitrate and nitrite excretion in bronchopulmonary dysplasia. Biol Neonate 85:173–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Dimitrios Tsikas
    • 1
  • Frank-Mathias Gutzki
    • 1
  • Dirk O. Stichtenoth
    • 1
  1. 1.Institute of Clinical Pharmacology, Hannover Medical SchoolHannoverGermany

Personalised recommendations