Advertisement

Marine Biology

, Volume 131, Issue 3, pp 443–459 | Cite as

Behaviour of echinoid larvae around sharp haloclines: effects of the salinity gradient and dietary conditioning

  • A. Metaxas
  • C. M. Young
Article

Abstract

We examined larval response to a range of sharp haloclines and determined the effect of dietary conditioning on that response in the sea urchins Echinometra lucunter and Arbacia punctulata. We reared larvae in the laboratory under a high or low concentration of either single (Isochrysis galbana) or mixed (Isochrysis galbana, Dunaliella tertiolecta, Thalassiosira weissflogii) microalgal species. For both species of sea urchins, rate of larval development was faster and age-specific larval length and width were greater in high-ration than low-ration diets. We examined the distribution of two- and four-arm larvae of E. lucunter from each diet treatment and of four-arm larvae of A. punctulata from the high-ration diets in cylinders with experimentally constructed haloclines. In three of the halocline treatments, the salinity of the bottom layer was 33‰ and that of the top layer was 21, 24 or 27‰ (21/33, 24/33 and 27/33) and in a fourth one, the salinities of the bottom and top layer were 30 and 21‰, respectively (21/30). The position of larvae in the cylinders varied with the steepness of the halocline and with dietary conditioning for both sea urchin species and all developmental stages tested. Significantly more larvae crossed the haloclines into water of 24 and 27‰ salinity than into water of 21‰ salinity. We observed an effect of diet on the position of larvae in the cylinders, and that effect varied among halocline treatments for both species. The proportion of larvae of E.lucunter that crossed the halocline was greater in low- than high-ration diets in the 24/33 and 27/33 treatments. Position of four-arm larvae in the cylinders also varied with food quality in high-ration diets: for E.lucunter in the 24/33 treatments, and for A. punctulata in the 21/30 treatments, more larvae from the single- than from the mixed-species diets were present above the halocline. Salinity in the adult habitat during most of the active reproductive period ranged from 15 to 40‰. We showed that larvae can respond to gradients in salinity, and therefore can remain within a water mass of higher salinity overlying the adult habitat. However, survival of poorly fed larvae may be increased if they are introduced into a new water mass and carried away from a nutritionally poor environment.

Keywords

Water Mass Bottom Layer Larval Development Salinity Gradient Reproductive Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • A. Metaxas
    • 1
  • C. M. Young
    • 1
  1. 1.Department of Larval Ecology, Harbor Branch Oceanographic Institution, 5600 U.S. 1 North, Fort Pierce, Florida 34946, USAUS

Personalised recommendations