Advertisement

Marine Biology

, 166:143 | Cite as

Significant population methylation divergence and local environmental influence in an invasive ascidian Ciona intestinalis at fine geographical scales

  • Ping Ni
  • Kieran J. Murphy
  • Russell C. Wyeth
  • Cory D. Bishop
  • Shiguo Li
  • Aibin ZhanEmail author
Original Paper

Abstract

Biological invasion provides a promising system for studying rapid environmental accommodation and adaptation in the wild. Mounting evidence indicates that epigenetic modifications such as DNA methylation play crucial roles in rapid local accommodation and adaptation. Thus, we hypothesize that different local environments can trigger methylation divergence among marine invasive populations at fine geographical scales. In this study, we examined population methylation patterns in the invasive ascidian, Ciona intestinalis, along the Atlantic coast of Nova Scotia, Canada, where significant temperature differences exist at defined locations along the coast. Using the methylation-sensitive amplification polymorphism (MSAP) technique, we observed a high level of intra- and inter-population diversity, as well as significant population methylation differentiation. We identified a correlation between local environments and methylation patterns, and further consistently recovered 14 temperature-related subepiloci by using multiple analyses. All these results demonstrate a substantial role of temperature in shaping population methylation patterns and an epigenetic response to environmental changes during range expansions. The complex fine-scale methylation structures among populations of C. intestinalis observed in this study suggest that multiple biotic and abiotic factors, as well as their interactions, should be further investigated to reveal epigenetic mechanisms of local accommodation and adaptation during biological invasions in marine ecosystems.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31622011; 31772449) to AZ, Youth Innovation Promotion Association, Chinese Academy of Science (2018054) to SL, a Department of Fisheries and Oceans Canada Aquaculture Collaborative Research and Development Program grant (M-13-01-002) to RCW, CDB and Dawn Sephton, a Nova Scotia Research and Innovation Graduate Scholarship to KJM, and the Aquaculture Association of Nova Scotia and its members who kindly allowed us to work on their mussel leases.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2019_3592_MOESM1_ESM.pdf (138 kb)
Supplementary material 1 (PDF 137 kb)
227_2019_3592_MOESM2_ESM.pdf (204 kb)
Supplementary material 2 (PDF 203 kb)
227_2019_3592_MOESM3_ESM.pdf (215 kb)
Supplementary material 3 (PDF 215 kb)
227_2019_3592_MOESM4_ESM.pdf (203 kb)
Supplementary material 4 (PDF 203 kb)
227_2019_3592_MOESM5_ESM.pdf (400 kb)
Supplementary material 5 (PDF 399 kb)
227_2019_3592_MOESM6_ESM.pdf (199 kb)
Supplementary material 6 (PDF 199 kb)
227_2019_3592_MOESM7_ESM.pdf (188 kb)
Supplementary material 7 (PDF 188 kb)

References

  1. Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19(7):1283–1295.  https://doi.org/10.1111/j.1365-294X.2010.04580.x CrossRefPubMedGoogle Scholar
  2. Barrett R, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23(1):38–44.  https://doi.org/10.1016/j.tree.2007.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480(7376):245–249.  https://doi.org/10.1038/nature10555 CrossRefPubMedGoogle Scholar
  4. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26(7):333–339.  https://doi.org/10.1016/j.tree.2011.03.023 CrossRefPubMedGoogle Scholar
  5. Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24(9):2277–2297.  https://doi.org/10.1111/mec.13032 CrossRefPubMedGoogle Scholar
  6. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115.  https://doi.org/10.1111/j.1461-0248.2007.01130.x CrossRefPubMedGoogle Scholar
  7. Bouchemousse S, Bishop JDD, Viard F (2016) Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Sci Rep 6:24875.  https://doi.org/10.1038/srep24875 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool System Evolut Res 53(3):186–193.  https://doi.org/10.1111/jzs.12101 CrossRefGoogle Scholar
  9. Carlton JT (1996) Pattern, process, and prediction in marine invasion ecology. Biol Cons 78(1–2):97–106.  https://doi.org/10.1016/0006-3207(96)00020-1 CrossRefGoogle Scholar
  10. Carver CE, Chisholm A, Mallet AL (2003) Strategies to mitigate the impact of Ciona intestinalis (L.) biofouling on shellfish production. J Shellfish Res 22:621–631Google Scholar
  11. Carver CE, Mallet AL, Vercaemer B (2006) Biological synopsis of the solitary tunicate Ciona intestinalis. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2746 (October 2015), p 55Google Scholar
  12. Cayer D, MacNeil M, Bagnall AG (1999) Tunicate fouling in Nova Scotia aquaculture: a new development. J Shellfish Res 18(1):327Google Scholar
  13. Chun YJ, Le Corre V, Bretagnolle F (2011) Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France. Mol Ecol 20(7):1378–1388.  https://doi.org/10.1111/j.1365-294X.2011.05013.x CrossRefPubMedGoogle Scholar
  14. Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24(9):1999–2017.  https://doi.org/10.1111/mec.13162 CrossRefPubMedGoogle Scholar
  15. Collin H, Fumagalli L (2011) Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Mol Ecol 20(21):4490–4502.  https://doi.org/10.1111/j.1365-294X.2011.05284.x CrossRefPubMedGoogle Scholar
  16. Dimond JL, Roberts SB (2016) Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol Ecol 25(8):1895–1904.  https://doi.org/10.1111/mec.13414 CrossRefPubMedGoogle Scholar
  17. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37.  https://doi.org/10.1146/annurev-marine-041911-111611 CrossRefGoogle Scholar
  18. Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, Paolo Casale F, Drewe P, Kahles A, Jean G, Vilhjálmsson B, Jagoda J, Irez S, Voronin V, Song Q, Long Q, Rätsch G, Stegle O, Clark RM, Nordborg M (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. rLife 4:e05255.  https://doi.org/10.7554/elife.05255 CrossRefGoogle Scholar
  19. Duncan EJ, Gluckman PD, Dearden PK (2014) Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J Exp Zool Part B Mol Dev Evol 322(4):208–220.  https://doi.org/10.1002/jez.b.22571 CrossRefGoogle Scholar
  20. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  21. Flores KB, Wolschin F, Amdam GV (2013) The role of methylation of DNA in environmental adaptation. Integr Comp Biol 53(2):359–372.  https://doi.org/10.1093/icb/ict019 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2):977–993.  https://doi.org/10.1534/genetics.108.092221 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:2.  https://doi.org/10.1186/1471-2156-15-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gao L, Geng Y, Li B, Chen J, Yang J (2010) Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant Cell Environ 33:1820–1827.  https://doi.org/10.1111/j.1365-3040.2010.02186.x CrossRefPubMedGoogle Scholar
  25. Hawes NA, Fidler AE, Tremblay LA, Pochon X, Dunphy BJ, Smith KF (2018a) Understanding the role of DNA methylation in successful biological invasions: a review. Biol Invasions 20(9):2285–2300.  https://doi.org/10.1007/s10530-018-1703-6 CrossRefGoogle Scholar
  26. Hawes NA, Tremblay LA, Pochon X, Dunphy B, Fidler AE, Smith KF (2018b) Effects of temperature and salinity stress on DNA methylation in a highly invasive marine invertebrate, the colonial ascidian Didemnum vexillum. PeerJ 6:e5003.  https://doi.org/10.7717/peerj.5003 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol 21(11):2602–2616.  https://doi.org/10.1111/j.1365-294X.2011.05402.x CrossRefPubMedGoogle Scholar
  28. Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A (2017) Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol 26(23):6621–6633.  https://doi.org/10.1111/mec.14382 CrossRefPubMedGoogle Scholar
  29. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176.  https://doi.org/10.1086/598822 CrossRefPubMedGoogle Scholar
  30. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492.  https://doi.org/10.1038/nrg3230 CrossRefPubMedGoogle Scholar
  31. Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour 8(5):957–960.  https://doi.org/10.1111/j.1755-0998.2008.02162.x CrossRefPubMedGoogle Scholar
  32. Kong N, Liu X, Li J, Mu W, Lian J, Xue Y, Li Q (2017) Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino. Chin J Oceanol Limnol 35(5):1248–1258CrossRefGoogle Scholar
  33. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17(8):386–391.  https://doi.org/10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  34. Li S, He F, Wen H, Li J, Si Y, Liu M, Huang Y, Meng L (2017) Low salinity affects cellularity, DNA methylation, and mRNA expression of igf1 in the liver of half smooth tongue sole (Cynoglossus semilaevis). Fish Physiol Biochem 43(6):1587–1602.  https://doi.org/10.1007/s10695-017-0395-7 CrossRefPubMedGoogle Scholar
  35. Lin Y, Chen Y, Yi C, Fong JJ, Kim W, Rius M, Zhan A (2017) Genetic signatures of natural selection in a model invasive ascidian. Sci Rep 7:44080.  https://doi.org/10.1038/srep27398 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Massicotte R, Angers B (2012) General-purpose genotype or how epigenetics extend the flexibility of a genotype. Genet Res Int 2012:317175.  https://doi.org/10.1155/2012/317175 CrossRefPubMedGoogle Scholar
  37. Menge BA, Daley BA, Wheeler PA, Dahlhoff E, Sanford E, Strub PT (1997) Benthic-pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Proc Natl Acad Sci 94(26):14530–14535.  https://doi.org/10.1073/pnas.94.26.14530 CrossRefPubMedGoogle Scholar
  38. Metzger DC, Schulte PM (2018) The DNA methylation landscape of stickleback reveals patterns of sex chromosome evolution and effects of environmental salinity. Genome Biol Evol 10(3):775–785.  https://doi.org/10.1093/gbe/evy034 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Morán P, Marco-Rius F, Megías M, Covelo-Soto L, Pérez-Figueroa A (2013) Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture 392–395:77–83.  https://doi.org/10.1016/j.aquaculture.2013.02.006 CrossRefGoogle Scholar
  40. Murphy KJ, Sephton D, Klein K, Bishop CD, Wyeth RC (2019) Abiotic conditions are not sufficient to predict spatial and interannual variation in abundance of Ciona intestinalis in Nova Scotia, Canada. Mar Ecol Progr Ser.  https://doi.org/10.3354/meps13076 (in press) CrossRefGoogle Scholar
  41. Navarrete SA, Wieters EA, Broitman BR, Castilla JC (2005) Scales of benthic-pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proc Natl Acad Sci USA 102(50):18046–18051.  https://doi.org/10.1073/pnas.0509119102 CrossRefPubMedGoogle Scholar
  42. Ni P, Li S, Lin Y, Xiong W, Huang X, Zhan A (2018) Methylation divergence of invasive Ciona ascidians: significant population structure and local environmental influence. Ecol Evol.  https://doi.org/10.1002/ece3.4504 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  44. Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13(6):288–294.  https://doi.org/10.1016/j.tplants.2008.03.004 CrossRefPubMedGoogle Scholar
  45. Pu C, Zhan A (2017) Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions 19(7):2015–2028.  https://doi.org/10.1007/s10530-017-1409-1 CrossRefGoogle Scholar
  46. Putnam HM, Davidson JM, Gates RD (2016) Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl 9:1165–1178.  https://doi.org/10.1111/eva.12408 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. N Phytol 168:81–91.  https://doi.org/10.1111/j.1469-8137.2005.01491.x CrossRefGoogle Scholar
  48. Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401.  https://doi.org/10.1038/nrg1834 CrossRefPubMedGoogle Scholar
  49. Richards EJ (2008) Population epigenetics. Curr Opin Genet Dev 18(2):221–226.  https://doi.org/10.1016/j.gde.2008.01.014 CrossRefPubMedGoogle Scholar
  50. Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15(9):1016–1025.  https://doi.org/10.1111/j.1461-0248.2012.01824.x CrossRefPubMedGoogle Scholar
  51. Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colome-Tatche M, Durka W, Engelhardt J, Gaspar B, Gogol-Doring A, Grosse I, van Gurp TP, Heer K, Kronholm I, Lampei C, Latzel V, Mirouze M, Opgenoorth L, Paun O, Prohaska S, Rensing SA, Stadler P, Trucchi E, Ullrich K, Verhoeven KJF (2017) Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett 20(12):1576–1590.  https://doi.org/10.1101/ele.12858 CrossRefPubMedGoogle Scholar
  52. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJM, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–329.  https://doi.org/10.1038/nature14248 CrossRefPubMedCentralGoogle Scholar
  53. Robertson M, Schrey A, Shayter A, Moss CJ, Richards C (2017) Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill. Evol Appl 10(8):792–801.  https://doi.org/10.1111/eva.12482 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Salmon A, Clotault J, Jenczewski E, Chable V, Manzanares-Dauleux MJ (2008) Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174(1):61–70.  https://doi.org/10.1016/j.plantsci.2007.09.012 CrossRefGoogle Scholar
  55. Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535.  https://doi.org/10.1146/annurev-marine-120709-142756 CrossRefGoogle Scholar
  56. Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation-sensitive amplification polymorphisms for epigenetic population studies. Mol Ecol Resour 13(4):642–653.  https://doi.org/10.1111/1755-0998.12100 CrossRefPubMedGoogle Scholar
  57. Sephton D, Vercaemer B, Nicolas JM, Keays J (2011) Monitoring for invasive tunicates in Nova Scotia, Canada (2006–2009). Aquat Invasions 6(4):391–403.  https://doi.org/10.3391/ai.2011.6.4.04 CrossRefGoogle Scholar
  58. Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD (2016) What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol 163:198.  https://doi.org/10.1007/s00227-016-2961-4 CrossRefGoogle Scholar
  59. Stimpson W (1852) Several new ascidians from the coast of the United States. Proc Boston Soc Nat Hist 4:228–232CrossRefGoogle Scholar
  60. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefGoogle Scholar
  61. Thorson JLM, Smithson M, Beck D, Sadler-Riggleman I, Nilsson E, Dybdahl M, Skinner MK (2017) Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci Rep 7:14139.  https://doi.org/10.1038/s41598-017-14673-6 CrossRefPubMedPubMedCentralGoogle Scholar
  62. van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, Schmitz RJ, Colomé-Tatché M, Johannes F (2015) Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci USA 112(21):6676–6681.  https://doi.org/10.1073/pnas.1424254112 CrossRefPubMedGoogle Scholar
  63. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. N Phytol 185(4):1108–1118.  https://doi.org/10.1111/j.1469-8137.2009.03121.x CrossRefGoogle Scholar
  64. Verhoeven KJF, VonHoldt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25(8):1631–1638.  https://doi.org/10.1111/mec.13617 CrossRefPubMedGoogle Scholar
  65. Waters JM, Dijkstra LH, Wallis GP (2000) Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? Mol Ecol 9(11):1815–1821.  https://doi.org/10.1046/j.1365-294X.2000.01082.x CrossRefPubMedGoogle Scholar
  66. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24(3):136–144.  https://doi.org/10.1016/j.tree.2008.10.007 CrossRefPubMedGoogle Scholar
  67. Zhan A, Macisaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19(21):4678–4694.  https://doi.org/10.1111/j.1365-294X.2010.04837.x CrossRefPubMedGoogle Scholar
  68. Zhan A, Darling JA, Bock DG, Lacoursiére-Roussel A, MacIsaac HJ, Cristescu ME (2012) Complex genetic patterns in closely related colonizing invasive species. Ecol Evol 2(7):1331–1346.  https://doi.org/10.1002/ece3.258 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhan A, Briski E, Bock DG, Ghabooli S, Macisaac HJ (2015) Ascidians as models for studying invasion success. Mar Biol 162(12):2449–2470.  https://doi.org/10.1007/s00227-015-2734-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
  3. 3.Department of BiologySt. Francis Xavier UniversityAntigonishCanada
  4. 4.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia

Personalised recommendations