Marine Biology

, 166:140 | Cite as

Melanin-concentrating hormone is not involved in luminescence emission in the velvet belly lanternshark, Etmopterus spinax

  • Laurent DuchateletEmail author
  • Jérôme Delroisse
  • Jérôme Mallefet
Short Note


Luminous deep-sea etmopterid sharks use hormonal control to regulate bioluminescence. Melatonin and prolactin trigger light emission and, conversely, α-melanocyte stimulating hormone actively reduces ongoing luminescence. Interestingly, these hormones are also known as regulators of skin pigment motion in teleost fish and epipelagic elasmobranchs. On the other hand, the melanin-concentrating hormone (MCH) is another regulator of the skin pigment motion in fish melanophores. Here, we studied the putative effect of MCH on the light emission control of the velvet belly lanternshark, Etmopterus spinax (Etmopteridae). In parallel, the presence of the MCH receptor in our model is investigated through database searches. Our results show that MCH is not involved in the bioluminescence triggering in the velvet belly lanternshark. Moreover, no MCH receptor transcript was found in a specific transcriptome of the luminous ventral skin of E. spinax.



Authors would like to thank T. Sorlie from the Espegrend Marine Biological Station (University of Bergen, Norway) for the help during E. spinax collection. L.D. is Ph.D. student funded by a FRIA fellowship (F.R.S.-FNRS Belgium). J.D. is postdoctoral researcher at the University de Mons (UMONS) and he is supported by a WISD-PDR Grant from the National Funds for Research (F.R.S.-FNRS Belgium, Project number 29101409). J.M. is Research Associate of the F.R.S.-FNRS.

Author contributions

LD performed, analysed and interpreted the pharmacological tests, performed transcriptome data analysis and was a major contributor in writing the manuscript. JD performed transcriptome and phylogenetic analyses, contributed to and revised the manuscript. JM supervised the work, contributed to and revised the manuscript. All authors read and approved the final manuscript.


This work was supported by a Grant from the Fonds de la Recherche Scientifique (FRIA/F.R.S.-FNRS, Belgium) to L.D.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Animal Ethics Committee of the Catholic University of Louvain in Louvain-la-Neuve, in agreement with the European directive 2010/63/UE).


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. CrossRefGoogle Scholar
  2. Aspengren S, Hedberg D, Sköld HN, Wallin M (2008) New insights into melanosome transport in vertebrate pigment cells. Int Rev Cell Mol Biol 272:245–302. CrossRefGoogle Scholar
  3. Baker BI (1993) The role of melanin-concentrating hormone in color change. Ann N Y Acad Sci 680:279–289. CrossRefPubMedGoogle Scholar
  4. Baker BI, Bird DJ (2002) Neuronal organization of the melanin-concentrating hormone system in primitive actinopterygians: Evolutionary changes leading to teleosts. J Comp Neurol 442:99–114. CrossRefPubMedGoogle Scholar
  5. Bernal D, Donley JM, Shadwick RE, Syme DA (2005) Mammal-like muscles power swimming in a cold-water shark. Nature 437(7063):1349–1352. CrossRefPubMedGoogle Scholar
  6. Cal L, Suarez-Bregua P, Cerdá-Reverter JM, Braasch I, Rotllant J (2017) Fish pigmentation and the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 211:26–33. CrossRefPubMedGoogle Scholar
  7. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Claes JM, Mallefet J (2008) Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae). J Fish Biol 73(6):1337–1350. CrossRefGoogle Scholar
  9. Claes JM, Mallefet J (2009a) Bioluminescence of sharks: first synthesis. In: Meyer-Rochow V (ed) Bioluminescence in focus—a collection of illuminating essays. Research Signpost, Thiruvananthapuram, pp 51–65Google Scholar
  10. Claes JM, Mallefet J (2009b) Ontogeny of photophore pattern in the velvet belly lantern shark, Etmopterus spinax. Zoology 112(6):433–441. CrossRefPubMedGoogle Scholar
  11. Claes JM, Mallefet J (2009c) Hormonal control of luminescence from lantern shark (Etmopterus spinax) photophores. J Exp Biol 212(22):3684–3692. CrossRefPubMedGoogle Scholar
  12. Claes JM, Mallefet J (2010) The lantern shark’s light switch: turning shallow water crypsis into midwater camouflage. Biol Lett 6:685–687. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Claes JM, Mallefet J (2015) Comparative control of luminescence in sharks: new insights from the slendertail lanternshark (Etmopterus molleri). J Exp Mar Biol Ecol 467:87–94. CrossRefGoogle Scholar
  14. Claes JM, Aksnes DL, Mallefet J (2010a) Phantom hunter of the fjords: camouflage by counterillumination in a shark (Etmopterus spinax). J Exp Mar Biol Ecol 388(1):28–32. CrossRefGoogle Scholar
  15. Claes JM, Krönström J, Holmgren S, Mallefet J (2010b) Nitric oxide in the control of luminescence from lantern shark (Etmopterus spinax) photophores. J Exp Biol 213(17):3005–3011. CrossRefPubMedGoogle Scholar
  16. Claes JM, Krönström J, Holmgren S, Mallefet J (2011) GABA inhibition of luminescence from lantern shark (Etmopterus spinax) photophores. Comp Biochem Physiol C Toxicol Pharmacol 153(2):231–236. CrossRefPubMedGoogle Scholar
  17. Claes JM, Ho H-C, Mallefet J (2012) Control of luminescence from pygmy shark (Squaliolus aliae) photophores. J Exp Biol 215:1691–1699. CrossRefPubMedGoogle Scholar
  18. Claes JM, Dean MN, Nilsson DE, Hart NS, Mallefet J (2013) A deepwater fish with ‘lightsabers’–dorsal spine-associated luminescence in a counterilluminating lanternshark. Sci Rep 3:1308. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Delroisse J, Duchatelet L, Flammang P, Mallefet J (2018) De novo transcriptome analyses provide insight into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 13(12):e0209767. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duchatelet L, Delroisse J, Flammang P, Mahillon J, Mallefet J (2019a) Etmopterus spinax, the velvet belly lanternshark, does not use bacterial luminescence. Acta Histochem 121(4):516–521. CrossRefPubMedGoogle Scholar
  21. Duchatelet L, Pinte N, Tomita T, Sato K, Mallefet J (2019b) Etmopteridae bioluminescence: dorsal pattern specificity and aposematic use. Zool Lett 5:9. CrossRefGoogle Scholar
  22. Duchatelet L, Delroisse J, Pinte N, Sato K, Ho H-C, Mallefet J (2019c) Adrenocorticotropic hormone and cyclic adenosine monophosphate are involved in the control of shark bioluminescence. Photochem Photobiol. CrossRefPubMedGoogle Scholar
  23. Duchatelet L, Claes JM, Mallefet J (2019d) Embryonic expression of encephalopsin supports bioluminescence perception in lanternshark photophores. Mar Biol 166:21. CrossRefGoogle Scholar
  24. Fujii R (2000) The regulation of motile activity in fish chromatophores. Pigment Cell Res 13:300–319. CrossRefGoogle Scholar
  25. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607CrossRefGoogle Scholar
  26. Griffond B, Baker BI (2002) Cell and molecular cell biology of melanin-concentrating hormone. Int Rev Cytol 213:233–277. CrossRefPubMedGoogle Scholar
  27. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(2):W557–W559. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Helaers R, Milinkovitch MC (2010) MetaPIGA v2 0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinform 11(1):379. CrossRefGoogle Scholar
  29. Kawauchi H (2006) Functions of melanin-concentrating hormone in fish. J Exp Zool 305A:751–760. CrossRefGoogle Scholar
  30. Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305:321–323. CrossRefPubMedGoogle Scholar
  31. Lefort V, Longueville JE, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34(9):2422–2424. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Matsuda K, Shimakura S, Maruyama K, Miura T, Uchiyama M, Kawauchi H, Shioda S, Takahashi A (2006) Central administration of melanin-concentrating hormone (MCH) suppresses food intake, but not locomotor activity, in the goldfish, Carassius autatus. Neurosci Lett 399:259–263. CrossRefPubMedGoogle Scholar
  33. Mizusawa K, Kobayashi Y, Sunuma T, Asahida T, Saito Y, Takahashi A (2011) Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri. Gen Comp Endocrinol 171(1):75–81. CrossRefPubMedGoogle Scholar
  34. Mizusawa K, Amiya N, Yamaguchi Y, Takabe S, Amano M, Breves JP, Fox BK, Grau EG, Hyodo S, Takahashi A (2012) Identification of mRNAs coding for mammalian-type melanin-concentrating hormone and its receptors in the scalloped hammerhead shark Sphyrna lewini. Gen Comp Endocrinol 179(1):78–87. CrossRefPubMedGoogle Scholar
  35. Mizusawa K, Kobayashi Y, Yamanome T, Saito Y, Takahashi A (2013) Interrelation between melanocyte-stimulating hormone and melanin-concentrating hormone in physiological body color change: roles emerging from barfin flounder Verasper moseri. Gen Comp Endocrinol 181:229–234. CrossRefPubMedGoogle Scholar
  36. Nagai M, Oshima N, Fujii R (1986) A comparative study of melanin-concentrating hormone (MCH) action on teleost melanophores. Biol Bull 171(2):360–370. CrossRefGoogle Scholar
  37. Nery LEM, de Lauro Castrucci AM (1997) Pigment cell signalling for physiological color change. Comp Biochem Physiol A Mol Integr Physiol 118(4):1135–1144. CrossRefGoogle Scholar
  38. Oshima N, Kasukawa H, Fujii R, Wilkes BC, Hruby VJ, Hadley ME (1986) Action of melanin-concentrating hormone (MCH) on teleost chromatophores. Gen Comp Endocrinol 64(3):381–388. CrossRefPubMedGoogle Scholar
  39. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247. CrossRefPubMedGoogle Scholar
  40. Renwart M, Delroisse J, Claes JM, Mallefet J (2014) Ultrastructural organization of lantern shark (Etmopterus spinax Linnaeus, 1758) photophores. Zoomorphology 133(4):405–416. CrossRefGoogle Scholar
  41. Renwart M, Delroisse J, Flammang P, Claes JM, Mallefet J (2015) Cytological changes during luminescence production in lanternshark (Etmopterus spinax Linnaeus, 1758) photophores. Zoomorphology 134(1):107–116. CrossRefGoogle Scholar
  42. Rossi M, Choi SJ, O’Shea D, Miyoshi T, Ghatei MA, Bloom SR (1997) Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology 138:351–355. CrossRefPubMedGoogle Scholar
  43. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong S-S, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LHT, Howard AD, Liu Q (2001) Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci USA 98(13):7564–7569. CrossRefPubMedGoogle Scholar
  44. Saito Y, Nagasaki H (2008) The melanin-concentrating hormone system and its physiological functions. In: Civelli O, Zhou QY (eds) Orphan G protein-coupled receptors and novel neuropeptides. Results and problems in cell differentiation, vol 46. Springer, Berlin, pp 159–179. CrossRefGoogle Scholar
  45. Sherbrooke WC, Hadley ME, Castrucci AML (1988) Melanotropic peptides and receptors: an evolutionary perspective in vertebrate physiological color change. In: Hadley ME (ed) Melanotropic peptides, vol 2. CRC Press, Washington, pp 175–190Google Scholar
  46. Sköld HN, Norström E, Wallin M (2002) Regulatory control of both microtubule- and actin-dependent fish melanosome movement. Pigment Cell Res 15(5):357–366. CrossRefPubMedGoogle Scholar
  47. Slominski A, Tobin DJ, Zmijewski MA, Wortsman J, Paus R (2008) Melatonin in the skin: synthesis, metabolism and functions. Trends Endrocrinol Metab 19(1):17–24. CrossRefGoogle Scholar
  48. Takahashi A, Kawauchi H (2006) Evolution of melanocortin systems in fish. Gen Comp Endocrinol 148(1):85–94. CrossRefPubMedGoogle Scholar
  49. Takahashi A, Tsuchiya K, Yamanome T, Amano M, Yasuda A, Yamamori K, Kawauchi H (2004) Possible involvement of melanin-concentrating hormone in food intake in a teleost, barfin flounder. Peptides 25:1613–1622. CrossRefGoogle Scholar
  50. Vallarino M, Andersen AC, Delbende C, Ottonello I, Eberle AN, Vaudry H (1989) Melanin-concentrating hormone (MCH) immunoreactivity in the brain and pituitary of the dogfish Scyliorhinus canicula. Colocalization with alpha-melanocyte-stimulating hormone (α-MSH) in hypothalamic neurons. Peptides 10(2):375–382. CrossRefPubMedGoogle Scholar
  51. Visconti MA, Castrucci AML (1993) Melanotropin receptors in the cartilaginous fish Potamotrygon reticulatus and in the lungfish, Lepidosiren paradoxa. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 106(2):523–528. CrossRefGoogle Scholar
  52. Visconti MA, Ramanzini GC, Camargo CR, Castrucci AML (1999) Elasmobranch color change: a short review and novel data on hormone regulation. J Exp Zool 284:485–491.;2-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Marine Biology Laboratory, Earth and Life InstituteCatholic University of LouvainLouvain-La-NeuveBelgium
  2. 2.Research Institute for Biosciences, Biology of Marine Organisms and BiomimeticsUniversity of MonsMonsBelgium

Personalised recommendations