Marine Biology

, 166:147 | Cite as

Review of the diversity, traits, and ecology of zooxanthellate jellyfishes

  • Nicolas DjeghriEmail author
  • Philippe Pondaven
  • Herwig Stibor
  • Michael N. Dawson
Review, Concept, and Synthesis


Many marine organisms form photosymbioses with zooxanthellae, but some, such as the medusozoans, are less well known. Here, we summarize the current knowledge on the diversity of zooxanthellate jellyfishes, to identify key traits of the holobionts, and to examine the impact of these traits on their ecology. Photosymbiosis with zooxanthellae originated at least seven times independently in Medusozoa; of these, five involve taxa with medusae. While most zooxanthellate jellyfishes are found in clades containing mainly non-zooxanthellate members, the sub-order Kolpophorae (Scyphozoa: Rhizostomeae) is comprised—bar a few intriguing exceptions—of only zooxanthellate jellyfishes. We estimate that 20–25% of Scyphozoa species are zooxanthellate (facultative symbiotic species included). Zooxanthellae play a key role in scyphozoan life-cycle and nutrition although substantial variation is observed during ontogeny, or at the intra- and inter-specific levels. Nonetheless, three key traits of zooxanthellate jellyfishes can be identified: (1) zooxanthellate medusae, as holobionts, are generally mixotrophic, deriving their nutrition both from predation and photosynthesis; (2) zooxanthellate polyps, although capable of hosting zooxanthellae rarely depend on them; and (3) zooxanthellae play a key role in the life-cycle of the jellyfish by allowing or facilitating strobilation. We discuss how these traits might help to explain some aspects of the ecology of zooxanthellate jellyfishes—notably their generally low ability to outbreak, and their reaction to temperature stress or to eutrophication—and how they could in turn impact marine ecosystem functioning.



First we would like to thank Patricia Kremer and Alan Verde who provided some unpublished data on Linuche unguiculata and Cassiopea xamachana, respectively. We would also like to thank Ferdinando Boero and André Cararra Morandini for pointing us to some hard to find literature. We thank Bella Galil, Ilka Straehler-Pohl and Sho Toshino for details about some of their work. We also thank Kylie Pitt and one anonymous reviewer for their valuable comments and suggestions. Finally, we thank Natalia Llopis Monferrer for the artwork in Fig. 3.


This work is part of the Ph.D. project of Nicolas Djeghri, funded by the University of Brest (UBO).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any work involving animals performed by any of the authors.

Supplementary material

227_2019_3581_MOESM1_ESM.pdf (647 kb)
Supplementary material 1 (PDF 646 kb)


  1. Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, LondonGoogle Scholar
  2. Arai MN (2001) Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451:69–87CrossRefGoogle Scholar
  3. Astorga D, Ruiz J, Prieto L (2012) Ecological aspects of early life stages of Cotylorhiza tuberculata (Scyphozoa: Rhizostomae) affecting its pelagic population success. Hydrobiologia 690:141–155CrossRefGoogle Scholar
  4. Banaszak AT, Iglesias-Prieto R, Trench RK (1993) Scrippsiella velellae sp. nov. (Peridiniales) and Gloeodinium viscum sp. nov. (Phytodiniales), Dinoflagellate symbionts of two hydrozoans (Cnidaria). J Phycol 29:517–528CrossRefGoogle Scholar
  5. Bayha KM, Graham WM (2014) Nonindigenous marine jellyfish: invasiveness, invasibility, and impacts. In: Pitt K, Lucas C (eds) Jellyfish blooms. Springer, Dordrecht, pp 45–77CrossRefGoogle Scholar
  6. Bayha KM, Dawson MN, Collins AG, Barbeitos MS, Haddock SHD (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50:436–455PubMedCrossRefGoogle Scholar
  7. Bezio N, Costello JH, Perry E, Colin SP (2018) Effect of capture surface morphology on feeding success of scyphomedusae: a comparative study. Mar Ecol Prog Ser 596:83–93CrossRefGoogle Scholar
  8. Bieri R (1977) The ecological significance of seasonal occurrence and growth rate of Velella (Hydrozoa). Publ Seto Mar Biol Lab 24:63–76CrossRefGoogle Scholar
  9. Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD (2006) Mass deposition of jellyfish in the deep Arabian Sea. Limnol Oceanogr 51:2077–2083CrossRefGoogle Scholar
  10. Blanquet RS, Phelan MA (1987) An unusual blue mesogleal protein from the mangrove jellyfish Cassiopea xamachana. Mar Biol 94:423–430CrossRefGoogle Scholar
  11. Blanquet RS, Riordan GP (1981) An ultrastructural study of the subumbrellar musculature and desmesomal complexes of Cassiopea xamachana (Cnidaria: Scyphozoa). Trans Am Microsc Soc 100:109–119CrossRefGoogle Scholar
  12. Boero F, Brotz L, Gibbons MJ, Piraino S, Zampardi S (2016) Impacts and effects of ocean warming on jellyfish. In: Laffoley D, Baxter JM (eds) Explaining ocean warming: causes, scale, effects and consequences. IUCN, Gland, pp 213–237Google Scholar
  13. Bolton TF, Graham WM (2004) Morphological variation among populations of an invasive jellyfish. Mar Ecol Prog Ser 278:125–139CrossRefGoogle Scholar
  14. Bouillon J (1984) Hydroméduses de la mer de Bismarck (Papouasie Nouvelle-Guinée. Partie IV: Leptomedusae (Hydrozoa-Cnidaria). Indo-Malayan Zool 1:25–112Google Scholar
  15. Bouillon J, Seghers G, Boero F (1988) Notes additionnelles sur les méduses de Papouasie Nouvelle-Guinée (Hydrozoa, Cnidaria) III. Indo-Malayan Zool 5:225–253Google Scholar
  16. Bouillon J, Gravili C, Pagès F, Gili J-M, Boero F (2006) An introduction to Hydrozoa. Publications Scientifiques du Muséum, ParisGoogle Scholar
  17. Brinckmann-Voss A, Arai MN (1998) Further notes on Leptolida (Hydrozoa: Cnidaria) from Canadian Pacific waters. Zool Verh 323:37–68Google Scholar
  18. Brooks WK (1903) On a new genus of hydroid jelly-fishes. Proc Am Phil Soc 42:11–14Google Scholar
  19. Calder DR (1991) Shallow-water hydroids of Bermuda: the Thecatae, exclusive of Plumularioidea. R Ont Mus Publ Life Sci 154:1–140Google Scholar
  20. Carrette T, Straehler-Pohl I, Seymour J (2014) Early life history of Alatina cf. moseri populations from Australia and Hawaii with implications for taxonomy (Cubozoa: Carybdeida, Alatinidae). PLoS One 9:e84377PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cates N (1975) Productivity and organic consumption in Cassiopea and Condylactus. J Exp Mar Biol Ecol 18:55–59CrossRefGoogle Scholar
  22. Cates N, McLaughlin JJA (1976) Differences of ammonia metabolism in symbiotic and aposymbiotic Condylactus and Cassiopea spp. J Exp Mar Biol Ecol 21:1–5CrossRefGoogle Scholar
  23. Cimino MA, Patris S, Ucharm G, Bell LJ, Terrill E (2018) Jellyfish distribution and abundance in relation to the physical habitat of Jellyfish Lake, Palau. J Trop Ecol 34:17–31CrossRefGoogle Scholar
  24. Colley NJ, Trench RK (1985) Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and a coelenterate. Cell Tissue Res 239:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  25. Condon RH, Steinberg DK, del Giorgio PA, Bouvier TC, Bronk DA, Graham WM, Ducklow HW (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Nat Acad Sci USA 108:10225–10230PubMedCrossRefPubMedCentralGoogle Scholar
  26. Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH, Sutherland KR, Mianzan HW, Bogeberg M, Purcell JE, Decker MB, Uye S-I, Madin LP, Brodeur RD, Haddock SHD, Malej A, Parry GD, Eriksen E, Quiñones J, Acha M, Harvey M, Arthur JM, Graham WM (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Nat Acad Sci USA 110:1000–1005PubMedCrossRefPubMedCentralGoogle Scholar
  27. Costello JH, Kremer PM (1989) Circadian rhythmicity in the location of zooxanthellae of the scyphomedusa Linuche unguiculata. Mar Ecol Prog Ser 57:279–286CrossRefGoogle Scholar
  28. Cruz-Rivera E, El-Regal MA (2015) A bloom of an edible scyphozoan jellyfish in the Red Sea. Mar Biodivers 46:515–519CrossRefGoogle Scholar
  29. Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv Mar Biol 26:249–293CrossRefGoogle Scholar
  30. da Silveira FL, Morandini AC (1997) Nausithoe aurea n. sp. (Scyphozoa, Coronatae: Nausithoidae), a species with two pathways of reproduction after strobilation: sexual and asexual. Contrib Zool 66:235–246Google Scholar
  31. da Silveira FL, Morandini AC (1998) Asexual reproduction in Linuche unguiculata (Swartz, 1788) (Scyphzoa: Coronatae) by planuloid formation through strobilation and segmentation. Proc Biol Soc Washington 111:781–794Google Scholar
  32. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL, Stake JL (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182CrossRefGoogle Scholar
  33. Davy SK, Allemand D, Weis VM (2012) Cell biology of Cnidarian-Dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dawson MN (2005) Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae)—a golden unstandard? Hydrobiologia 537:185–206CrossRefGoogle Scholar
  35. Dawson MN, Hamner WM (2003) Geographic variation and behavioral evolution in marine plankton: the case of Mastigias (Scyphozoa, Rhizostomeae). Mar Biol 143:1161–1174CrossRefGoogle Scholar
  36. Dawson MN, Hamner WM (2009) A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616:193–215CrossRefGoogle Scholar
  37. Dawson MN, Martin LE (2001) Geographic variations and ecological adaptation in Aurelia (Scyphozoa, Semeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451:259–273CrossRefGoogle Scholar
  38. Dawson MN, Martin LE, Penland LK (2001) Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451:131–144CrossRefGoogle Scholar
  39. de Souza LM, Iacomini M, Gorin PAJ, Sari RS, Haddad MA, Sassaki GL (2007) Glyco- and sphingophoslipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem Phys Lipids 145:85–96PubMedCrossRefGoogle Scholar
  40. Drew EA (1972) The biology and physiology of alga-invertebrate symbioses. I. Carbon fixation in Cassiopea sp. at Aldabra Atoll. J Exp Mar Biol Ecol 9:65–69CrossRefGoogle Scholar
  41. Duarte CM, Pitt KA, Lucas CH, Purcell JE, Uye S-I, Robinson K, Brotz L, Decker MB, Sutherland KR, Malej A, Madin L, Mianzan H, Gili J-M, Fuentes V, Atienza D, Pagés F, Breitburg D, Malek J, Graham WM, Condon RH (2012) Is global ocean sprawl a cause of jellyfish blooms? Front Ecol Environ 11:91–97CrossRefGoogle Scholar
  42. Estes AM, Kempf SC, Henry RP (2003) Localization and quantification of carbonic anhydrase activity in the symbiotic scyphozoan Cassiopea xamachana. Biol Bull 204:278–289PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146CrossRefGoogle Scholar
  44. Ferrier-Pagès C, Leal MC (2018) Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol 9:723–740PubMedPubMedCentralGoogle Scholar
  45. Fitt WK (1984) The role of chemosensory behavior of Symbiodinium microadriaticum, intermediate hosts, and host behavior in the infection of coelenterates and molluscs with zooxanthellae. Mar Biol 81:9–17CrossRefGoogle Scholar
  46. Fitt WK, Cook CB (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol 139:507–517CrossRefGoogle Scholar
  47. Fitt WK, Costley K (1998) The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana. J Exp Mar Biol Ecol 222:79–91CrossRefGoogle Scholar
  48. Fleck J, Fitt WK (1999) Degrading mangrove leaves of Rhizophora mangle Linne provide a natural cue for settlement and metamorphosis of the upside down jellyfish Cassiopea xamachana Bigelow. J Exp Mar Biol Ecol 234:83–94CrossRefGoogle Scholar
  49. Freeman CJ, Stoner EW, Easson CG, Matterson KO, Baker DM (2016) Symbiont carbon and nitrogen assimilation in the Cassiopea-Symbiodinium mutualism. Mar Ecol Prog Ser 544:281–286CrossRefGoogle Scholar
  50. Freeman CJ, Stoner EW, Easson CG, Matterson KO, Baker DM (2017) Variation in δ13C and δ15N values suggests a coupling of host and symbiont metabolism in the Symbiodinium-Cassiopea mutualism. Mar Ecol Prog Ser 571:245–251CrossRefGoogle Scholar
  51. Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Protozool 9:45–52CrossRefGoogle Scholar
  52. Fuentes V, Straehler-Pohl I, Atienza D, Franco I, Tilves U, Gentile M, Acevedo M, Oleriaga A, Gili J-M (2011) Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and inter-annual variability along the Catalan coast and the Mar Menor (Spain, NW Mediterranean). Mar Biol 158:2247–2266CrossRefGoogle Scholar
  53. Furla P, Richier S, Allemand D (2011) Physiological adaptation to symbiosis in cnidarians. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 187–195CrossRefGoogle Scholar
  54. Galea HR, Ferry R (2015) Notes on some hydroids (Cnidaria) from Martinique, with descriptions of five new species. Rev Suisse Zool 122:213–246Google Scholar
  55. García JR (1990) Population dynamics and production of Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda, Puerto Rico. Mar Ecol Prog Ser 64:243–251CrossRefGoogle Scholar
  56. García JR, Durbin E (1993) Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. J Exp Mar Biol Ecol 173:71–93CrossRefGoogle Scholar
  57. Gershwin L, Davie PJF (2013) A remarkable new jellyfish (Cnidaria: Scyphozoa) from coastal Australia, representing a new suborder within the Rhizostomeae. Mem Queensl Mus 56:625–630Google Scholar
  58. Gómez Daglio L, Dawson MN (2017) Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. Invertebr Syst 31:635–663CrossRefGoogle Scholar
  59. Graham WM, Martin DL, Felder DL, Asper VL, Perry HM (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5:53–69CrossRefGoogle Scholar
  60. Gueroun SKM, Kéfi-Daly Yahia O, Deidun A, Fuentes V, Piraino S, Daly Yahia MN (2014) First record and potential trophic impact of Phyllorhiza punctata (Cnidaria: Scyphozoa) along the north Tunisian coast (South Western Mediterranean Sea). Ital J Zool 8:95–100Google Scholar
  61. Haddad MA, Nogueira Júnior M (2006) Reappearance and seasonality of Phyllorhiza punctata von Lendenfeld (Cnidaria, Scyphozoa, Rhizostomeae) medusae in southern Brazil. Rev Bras Zool 23:824–831CrossRefGoogle Scholar
  62. Hamner WM, Hauri IR (1981) Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnol Oceanogr 26:414–423CrossRefGoogle Scholar
  63. Hamner WM, Gilmer RW, Hamner PP (1982) The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnol Oceanogr 27:896–909CrossRefGoogle Scholar
  64. Hartmann AC, Marhaver KL, Klueter A, Lovci MT, Closek CJ, Diaz E, Chamberland VF, Archer FI, Deheyn DD, Vermeij MJA, Medina M (2019) Acquisition of obligate symbionts during the larval stage is not beneficial for a coral host. Mol Ecol 28:141–155PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hays GC, Doyle TK, Houghton JDR (2018) A paradigm shift in the trophic importance of jellyfish? Trends Ecol Evol 33:874–884PubMedCrossRefPubMedCentralGoogle Scholar
  66. Heins A, Glatzel T, Holst S (2015) Revised descriptions of the nematocysts and the asexual reproduction modes of the scyphozoan jellyfish Cassiopea andromeda (Forskål, 1775). Zoomorphology 134:351–366CrossRefGoogle Scholar
  67. Helm RR (2018) Evolution and development of scyphozoan jellyfish. Biol Rev 93:1228–1250PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hofmann DK, Kremer BP (1981) Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): Significance of endosymbiotic Dinoflagellates. Mar Biol 65:25–33CrossRefGoogle Scholar
  69. Hofmann DK, Neumann R, Henne K (1978) Strobilation budding and initiation of scyphistome morphogenesis in the Rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar Biol 47:161–176CrossRefGoogle Scholar
  70. Hofmann DK, Fitt WK, Fleck J (1996) Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish. Int J Dev Biol 40:331–338PubMedGoogle Scholar
  71. Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128CrossRefGoogle Scholar
  72. Jantzen C, Wild C, Rasheed M, El-Zibdah M, Richter C (2010) Enhanced pore-water nutrient fluxes by the upside-down jellyfish Cassiopea sp. in a Red Sea coral reef. Mar Ecol Prog Ser 411:117–125CrossRefGoogle Scholar
  73. Kayal E, Bentlage B, Cartwright P, Yanagihara AA, Lindsay DJ, Hopcroft RR, Collins AG (2015) Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription. PeerJ 3:e1403PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kayal E, Bentlage B, Pankey MS, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol 18:68PubMedCentralCrossRefGoogle Scholar
  75. Kikinger R (1992) Cotylorhiza tuberculata (Cnidaria: Scyphozoa—Life history of a stationary population. Mar Ecol 13:333–362CrossRefGoogle Scholar
  76. Klein SG, Pitt KA, Nitschke MR, Goyen S, Welsh DT, Suggett DJ, Carroll AR (2017) Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob Change Biol 23:3690–3703CrossRefGoogle Scholar
  77. Klein SG, Pitt KA, Lucas CH, Hung S-H, Schmidt-Roach S, Aranda M, Duarte CM (2019) Night-time temperature reprieves enhances the thermal tolerance of a symbiotic cnidarian. Front Mar Sci 6:453CrossRefGoogle Scholar
  78. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:1–469Google Scholar
  79. Kremer P (2005) Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J Mar Biol Assoc UK 85:613–625CrossRefGoogle Scholar
  80. Kremer P, Costello J, Kremer J, Canino M (1990) Significance of photosynthetic endosymbionts to the carbon budget of the schyphomedusa Linuche unguiculata. Limnol Oceanogr 35:609–624CrossRefGoogle Scholar
  81. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  82. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lampert KP (2016) Cassiopea and its zooxanthellae. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future. Springer, Cham, pp 415–423CrossRefGoogle Scholar
  84. Lampert KP, Bürger P, Striewski S, Tollrian R (2012) Lack of association between color morphs of the jellyfish Cassiopea andromeda and zooxanthella clade. Mar Ecol 33:364–369CrossRefGoogle Scholar
  85. Lapointe BE, Brewton RA, Herren LW, Porter JW, Hu C (2019) Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar Biol 166:108CrossRefGoogle Scholar
  86. Larson RJ (1980) The medusae of Velella velella (Linnaeus, 1758) (Hydrozoa, Chondrophorae). J Plankton Res 2:183–186CrossRefGoogle Scholar
  87. Larson RJ (1992) Riding Langmuir circulations and swimming in circle: a novel form of clustering behavior by the scyphomedusa Linuche unguiculata. Mar Biol 112:229–235CrossRefGoogle Scholar
  88. Larson RJ (1997) Feeding behaviour of Caribbean scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana Bigelow. Stud Nat Hist Caribbean Reg 73:43–54Google Scholar
  89. Lesser MP, Stat M, Gates RD (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611CrossRefGoogle Scholar
  90. Lewis JB (1991) The ampullae and medusae of the calcareous hydrozoan Millepora complanata. Hydrobiologia 216(217):165–169CrossRefGoogle Scholar
  91. Lewis JB (2006) Biology and ecology of the hydrocoral Millepora on coral reefs. Adv Mar Biol 50:1–55PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lopes AR, Baptista M, Rosa IC, Dionísio G, Gomes-Pereira J, Paula JR, Figueiredo C, Bandarra N, Calado R, Rosa R (2016) “Gone with the wind”: fatty acid biomarkers and chemotaxonomy of stranded pleustonic hydrozoans (Velella velella and Physalia physalis). Biochem Syst Ecol 66:297–306CrossRefGoogle Scholar
  93. Lucas CH, Dawson MN (2014) What are jellyfish and Thaliaceans and why do they bloom? In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 9–44CrossRefGoogle Scholar
  94. Lucas CH, Graham WM, Widmer C (2012) Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Adv Mar Biol 63:133–196PubMedCrossRefPubMedCentralGoogle Scholar
  95. Ludwig F-D (1969) Die Zooxanthellan bei Cassiopea andromeda Eschscholtz 1829 (Polyp-Stadium) und ihre Bedeutung für die Strobilation. Zoologische Jahrbücher. Abt Anat Ontog Tiere 86:238–277Google Scholar
  96. Mackas DL, Greve W, Edwards M, Chiba S, Tadokoro K, Eloire D, Mazzochi MG, Batten S, Richardson AJ, Johnson C, Head E, Conversi A, Peluso T (2012) Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Prog Oceanogr 97:31–62CrossRefGoogle Scholar
  97. Mangan J (1909) The entry of zooxanthellae into the ovum of Millepora, and some particulars concerning the medusae. J Cell Sci 53:697–710Google Scholar
  98. Maronna MM, Miranda TP, Peña Cantero ÁL, Barbeitos MS, Marques AC (2016) Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa). Sci Rep 6:18075PubMedPubMedCentralCrossRefGoogle Scholar
  99. Marques AC, Peña Cantero AL, Vervoort W (2000) Mediterranean species of Eudendrium Ehrenberg, 1834 (Hydrozoa, Anthomedusae, Eudendriidae) with the description of a new species. J Zool Soc London 252:197–213CrossRefGoogle Scholar
  100. Martin LE, Dawson MN, Bell LJ, Colin PL (2006) Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific. Biol Lett 2:144–147PubMedCrossRefPubMedCentralGoogle Scholar
  101. McCloskey LR, Muscatine L, Wilkerson FP (1994) Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Mar Biol 119:13–22CrossRefGoogle Scholar
  102. McGill CJ, Pomoroy CM (2008) Effects of bleaching and nutrient supplementation on wet weight in the jellyfish Cassiopea xamachana (Bigelow) (Cnidaria: Scyphozoa). Mar Freshw Behav Physiol 41:179–189CrossRefGoogle Scholar
  103. Medel MD, Vervoort W (1995) Plumularian hydroids (Cnidaria: Hydrozoa) from the Strait of Gibraltar and nearby areas. Zool Verh 300:1–72Google Scholar
  104. Mellas RE, McIlroy SE, Fitt WK, Coffroth MA (2014) Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp. J Exp Mar Biol Ecol 459:38–44CrossRefGoogle Scholar
  105. Mergner H, Svoboda A (1977) Productivity and seasonal changes in selected reef areas in the Gulf of Aquaba (Red Sea). Helgol Meeresunters 30:383–399CrossRefGoogle Scholar
  106. Mies M, Güth AZ, Tenório AA, Banha TNS, Waters LG, Polito PS, Taniguchi S, Bícego MC, Sumida PYG (2018) In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37:677–689CrossRefGoogle Scholar
  107. Montgomery MK, Kremer PM (1995) Transmission of symbiotic dinoflagellates through the sexual cycle of the host scyphozoan Linuche unguiculata. Mar Biol 124:147–155CrossRefGoogle Scholar
  108. Morandini AC, Stampar SN, Maronna MM, da Silveira FL (2017) All non-indigenous species were introduced recently? The case study of Cassiopea (Cnidaria: Scyphozoa) in Brazilian waters. J Mar Biol Assoc UK 97:321–328CrossRefGoogle Scholar
  109. Mortillaro JM, Pitt KA, Lee SY, Meziane T (2009) Light intensity influences the production and translocation of fatty acids by zooxanthellae in the jellyfish Cassiopea sp. J Exp Mar Biol Ecol 378:22–30CrossRefGoogle Scholar
  110. Moura CJ, Lessios H, Cortés J, Nizinski MS, Reed J, Santos RS, Collins AG (2018) Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy. Sci Rep 8:17986PubMedPubMedCentralCrossRefGoogle Scholar
  111. Muscatine L (1974) Endosymbiosis of cnidarians and algae. In: Muscattine L, Lenhoff HM (eds) Coelenterate biology: reviews and new perspectives. Academic Press, New York, pp 359–395CrossRefGoogle Scholar
  112. Muscatine L, Marian RE (1982) Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnol Oceanogr 27:910–917CrossRefGoogle Scholar
  113. Muscatine L, Wilkerson FP, McCloskey LR (1986) Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Mar Ecol Prog Ser 32:279–290CrossRefGoogle Scholar
  114. Nawrocki AM, Schuchert P, Cartwright P (2010) Phylogenetics and the evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zool Scr 39:290–304CrossRefGoogle Scholar
  115. Newkirk CR, Frazer TK, Martindale MQ (2018) Acquisition and proliferation of algal symbionts in bleached polyps of the upside-down jellyfish, Cassiopea xamachana. J Expl Mar Biol Ecol 508:44–51CrossRefGoogle Scholar
  116. Ohdera AH, Abrams MJ, Ames CL, Baker DM, Suescún-Bolivar LP, Collins AG, Freeman CJ, Gamero-Mora E, Goulet TL, Hofmann DK, Jaimes-Becerra A, Long PF, Marques AC, Miller LA, Mydlarz LD, Morandini AC, Newkirk CR, Putri SP, Samson JE, Stampar SN, Steinworth B, Templeman M, Thomé PE, Vlok M, Woodley CM, Wong JCY, Martindale MQ, Fitt WK, Medina M (2018) Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system. Front Ecol Evol 6:35CrossRefGoogle Scholar
  117. Ortiz-Corp’s E, Cutress CE, Cutress BM (1987) Life history of the Coronate scyphozoan Linuche unguiculata (Swartz, 1788). Caribb J Sci 23:432–443Google Scholar
  118. Pagliara P, Bouillon J, Boero F (2000) Photosynthetic planulae and planktonic hydroids: contrasting strategies of propagule survival. Sci Mar 64:173–178CrossRefGoogle Scholar
  119. Peach MB, Pitt KA (2005) Morphology of the nematocysts of the medusae of two scyphozoans, Catostylus mosaicus and Phyllorhiza punctata (Rhizostomeae): implication for capture of prey. Invertebr Biol 124:98–108CrossRefGoogle Scholar
  120. Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475(476):359–369CrossRefGoogle Scholar
  121. Pitt KA, Koop K, Rissik D, Kingsford MJ (2004) The ecology of scyphozoan jellyfish in Lake Illawara. Wetlands (Australia) 21:115–123Google Scholar
  122. Pitt KA, Koop K, Rissik D (2005) Contrasting contributions to inorganic nutrient recycling by the co-occuring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). J Exp Mar Biol Ecol 315:71–86CrossRefGoogle Scholar
  123. Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149CrossRefGoogle Scholar
  124. Prieto L, Astorga D, Navarro G, Ruiz J (2010) Environmental control of phase transition and polyp survival of a massive-outbreaker Jellyfish. PLoS One 5:e13793PubMedPubMedCentralCrossRefGoogle Scholar
  125. Probert I, Siano R, Poirier C, Decelle J, Biard T, Tuji A, Suzuki N, Not F (2014) Brandtodinium gen. nov. and B. nutricula comb. nov. (Dinophyceae) a dinoflagellate commonly found in symbiosis with polycistine radiolarians. J Phycol 50:388–399PubMedCrossRefPubMedCentralGoogle Scholar
  126. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann Rev Mar Sci 4:209–235PubMedCrossRefPubMedCentralGoogle Scholar
  127. Purcell JE, Clarkin E, Doyle TK (2012a) Foods of Velella velella (Cnidaria: Hydrozoa) in algal rafts and its distribution in Irish seas. Hydrobiologia 690:47–55CrossRefGoogle Scholar
  128. Purcell JE, Atienza D, Fuentes V, Olariaga A, Tilves U, Colahan C, Gili J-M (2012b) Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690:169–180CrossRefGoogle Scholar
  129. Purcell JE, Milisenda G, Rizzo A, Carrion SA, Zampardi S, Airoldi S, Zagami G, Guglielmo L, Boero F, Doyle TK, Piraino S (2015) Digestion and predation rates of zooplankton by the pleustonic hydrozoan Velella velella and widespread blooms in 2013 and 2014. J Plankton Res 37:1056–1067CrossRefGoogle Scholar
  130. Rahat M, Adar O (1980) Effect of symbiotic zooxanthellae and temperature on budding and strobilation in Cassiopea andromeda (Eschscholz). Biol Bull 159:394–401CrossRefGoogle Scholar
  131. Rippingale RJ, Kelly SJ (1995) Reproduction and survival of Phyllorhiza punctata (Cnidaria: Rhizostomeae) in a seasonally fluctuating salinity regime in Western Australia. Mar Freshw Res 46:1145–1151CrossRefGoogle Scholar
  132. Ruiz J, Prieto L, Astorga D (2012) A model for temperature control of jellyfish (Cotylorhiza tuberculata) outbreaks: a causal analysis in a Mediterranean coastal lagoon. Ecol Modell 233:59–69CrossRefGoogle Scholar
  133. Santhanakrishnan A, Dollinger M, Hamlet CL, Colin SP, Miller LA (2012) Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. J Exp Biol 215:2369–2381PubMedCrossRefPubMedCentralGoogle Scholar
  134. Santos SR, Taylor DJ, Kinzie RA III, Hidaka M, Sakai K, Coffroth MA (2003) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenetics Evol 23:97–111CrossRefGoogle Scholar
  135. Schiariti A, Morandini AC, Jarms G, von Glehn Paes R, Franke S, Mianzan H (2014) Asexual reproduction strategies and blooming potential in Scyphozoa. Mar Ecol Prog Ser 510:241–253CrossRefGoogle Scholar
  136. Simpson GG (1953) The major features of evolution. Columbia University Press, New YorkCrossRefGoogle Scholar
  137. Soong K, Cho LC (1998) Synchronized release of medusae from three species of hydrozoan fire corals. Coral Reefs 17:145–154CrossRefGoogle Scholar
  138. Stoecker DK, Johnson MD, de Vargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310CrossRefGoogle Scholar
  139. Stoner EW, Layman CA, Yeager LA, Hasset HM (2011) Effects of anthropogenic disturbance on the abundance and size of epibenthic jellyfish Cassiopea spp. Mar Pollut Bull 62:1109–1114PubMedCrossRefPubMedCentralGoogle Scholar
  140. Straehler-Pohl I, Jarms G (2010) Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia 645:3–21CrossRefGoogle Scholar
  141. Straehler-Pohl I, Jarms G (2011) Morphology and life cycle of Carybdea morandinii, sp. nov. (Cnidaria), a cubozoan with zooxanthellae and peculiar polyp anatomy. Zootaxa 2755:36–56CrossRefGoogle Scholar
  142. Straehler-Pohl I, Toshino S (2015) Carybdea morandinii—New investigations on its life cycle reveal its true genus: Carybdea morandinii Straehler-Pohl & Jarms, 2011 becomes Alatina morandinii (Straehler-Pohl & Jarms, 2011). Plankton Benthos Res 10:167–177CrossRefGoogle Scholar
  143. Sugiura Y (1963) On the life-history of Rhizostome medusae I. Mastigias papua L. Agassiz Annot Zool Jpn 36:194–202Google Scholar
  144. Sugiura Y (1964) On the life-history of Rhizostome medusae II. Indispensability of zooxanthellae for strobilation in Mastigias papua. Embryologia 8:223–233CrossRefGoogle Scholar
  145. Sugiura Y (1965) On the life-history of Rhizostome medusae III. On the effects of temperature on the strobilation of Mastigias papua. Biol Bull 128:493–496CrossRefGoogle Scholar
  146. Sugiura Y (1969) On the life-history of Rhizostome medusae V. On the relation between zooxanthellae and the strobilation of Cephea cephea. Bull Mar Biol Stn Asamushi 8:227–233Google Scholar
  147. Svoboda A, Cornelius PFS (1991) The European and Mediterranean species of Aglaophenia (Cnidaria: Hydrozoa). Zool Verh 274:4–72Google Scholar
  148. Swift HF, Gómez Daglio L, Dawson MN (2016) Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Mol Phylogenetics Evol 99:103–115CrossRefGoogle Scholar
  149. Thornhill DJ, Daniel MW, LaJeunesse TC, Schmidt GW, Fitt WK (2006) Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J Exp Mar Biol Ecol 338:50–56CrossRefGoogle Scholar
  150. Todd BD, Thornhill DJ, Fitt WK (2006) Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Mar Pollut Bull 52:515–521PubMedCrossRefPubMedCentralGoogle Scholar
  151. Tokioka T (1964) Occurrences of purplish individuals of Cephea cephea (Forskål) in the vicinity of Seto. Publ Seto Mar Biol Lab 12:149–156CrossRefGoogle Scholar
  152. Trench RK (1971) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates II. Liberation of fixed 14C by zooxanthellae in vitro. Proc R Soc London B 177:237–250CrossRefGoogle Scholar
  153. Underwood AH, Straehler-Pohl I, Carrette TJ, Sleeman J, Seymour JE (2018) Early life history and metamorphosis in Malo maxima Gershwin, 2005 (Carukiidae, Cubozoa, Cnidaria). Plankton Benthos Res 13:143–153CrossRefGoogle Scholar
  154. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbiosis in animals. J Exp Bot 59:1069–1080PubMedCrossRefPubMedCentralGoogle Scholar
  155. Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162CrossRefGoogle Scholar
  156. Verity PG, Purcell JE, Frischer ME (2011) Seasonal patterns in size and abundance of Phyllorhiza punctata: an invasive scyphomedusa in coastal Georgia (USA). Mar Biol 158:2219–2226CrossRefGoogle Scholar
  157. Welsh DT, Dunn RJK, Meziane T (2009) Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635:351–362CrossRefGoogle Scholar
  158. Werner B (1973) New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Publ Seto Mar Biol Lab 20:35–61CrossRefGoogle Scholar
  159. West EJ, Pitt KA, Welsh DT, Koop K, Rissik D (2009) Top-down and bottom-up influences of jellyfish on primary productivity and planktonic assemblages. Limnol Oceanogr 54:2058–2071CrossRefGoogle Scholar
  160. Wilkerson FP, Kremer P (1992) DIN, DON and PO4 flux by medusa with algal symbionts. Mar Ecol Prog Ser 90:237–250CrossRefGoogle Scholar
  161. Wilkerson FP, Muller Parker G, Muscatine L (1983) Temporal patterns of cell division in natural populations of endosymbiotic algae. Limnol Oceanogr 28:1009–1014CrossRefGoogle Scholar
  162. Wittenberg JB (1960) The source of carbon monoxide in the float of the portuguese man-of-war Physalia physalis L. J Exp Biol 37:698–705Google Scholar
  163. Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694PubMedCrossRefPubMedCentralGoogle Scholar
  164. Zeman SM, Corrales-Ugalde M, Brodeur RD, Sutherland KR (2018) Trophic ecology of the neustonic cnidarian Velella velella in the northern California Current during an extensive bloom year: insight from gut contents and stable isotope analysis. Mar Biol 165:120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicolas Djeghri
    • 1
    Email author
  • Philippe Pondaven
    • 1
  • Herwig Stibor
    • 2
  • Michael N. Dawson
    • 3
  1. 1.Institut Universitaire Européen de la Mer, IUEM/UBO, Laboratoire des Sciences de l’Environnement Marin, LEMAR, UMR 6539, Technopôle Brest IroiseUniversité de BrestPlouzanéFrance
  2. 2.Department Biologie II, aquatische ÖkologieLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Department of Life and Environmental Sciences, School of Natural SciencesUniversity of CaliforniaMercedUSA

Personalised recommendations