Marine Biology

, 166:91 | Cite as

Unexplored diversity of the mesophotic echinoderm fauna of the Easter Island ecoregion

  • Ariadna MechoEmail author
  • Erin E. Easton
  • Javier Sellanes
  • Matthias Gorny
  • Christopher Mah
Original paper


The Easter Island ecoregion (EIE) is one of the most remote marine areas of the world and encompasses a vast and fragile ecosystem including oceanic islands and seamounts. In January 2014 and March 2016, a remotely operated vehicle was used to explore a subsurface peak off Easter Island (27.23°S, 109.48°W) and a seamount (26.92°S, 110.26°W), respectively located 10 km southwest and 98 km west of the island. More than 950 echinoderms were observed in the 5 h of video recorded during the seven dives conducted at depths between ~ 160 and 280 m. The communities of echinoderms observed at these depths markedly differed from those reported for shallower waters near Easter Island. Of the 20 morphospecies reported in the present study, only 5 were previously reported in the EIE. One species, six genera, and three families were reported for the first time in this area, and two new genera were discovered and described. A preliminary biogeographic analysis suggests affinities between the observed echinoderms and those of the West Pacific. These findings highlight the uniqueness of these assemblages and, therefore, the importance of considering them in the establishment of effective management strategies for these communities, which are within the Rapa Nui marine-protected area created in 2017.



We would like to thank the Chilean Navy, pilot and crew of the LSG Tokerau. Thanks also to Matias Atamu, Enrique “Taka” Hey, Iván Hinojosa, Arturo Tuki, Carlos Varela, and Germán Zapata-Hernández for providing assistance in the field. Special thanks to Sergio Rapu and the Rapa Nui Heritage Foundation for providing land and facilities for our on-island laboratory. We would like to thank Dr. H.A. Lessios and Dr. M. Mihaljevic, and especially to Dr. F.W.E. Rowe for their help with the classification. Data collection was funded by the Chilean Millennium Initiative ESMOI, the National Geographic Society, OCEANA (providing also the ROV), and a postdoctoral contract to A.M. provided by the Universidad Católica del Norte. Additional funding was provided by FONDECYT 1181153 grant and by the support of the Pure Ocean Fund, managed by the King Baudouin Foundation.


Funding was provided by the Chilean Millennium Initiative ESMOI, the National Geographic Society, OCEANA (providing also the ROV), and a postdoctoral contract to A.M. provided by the Universidad Católica del Norte. Additional funding was provided by FONDECYT 1181153 Grant and by the support of the Pure Ocean Fund, managed by the King Baudouin Foundation.

Compliance with ethical standards

Ethical approval

We declare that all applicable international, national and/or institutional guidelines for sampling videos and organisms for the study have been followed and all necessary approvals have been obtained from the Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA) and Comité Oceanográfico Nacional (CONA).

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

227_2019_3537_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. Agassiz A (1863) List of the echinoderms sent to different institutions in exchange for other specimens, with annotations. Bull Mus Comp Zool 1:17–28Google Scholar
  2. Allison EC, Durham JW, Mintz LW (1967) New southeast Pacific echinoids. Occas Pap Calif Acad Sci 62:1–23Google Scholar
  3. Audouin V (1809) Explication sommaire des planches d’echinoderms de l’Égypte et de la Syrie, publiées par J. C. Savigny, membre de l’Institut; offrant un exposé des caractères naturels des genres avec la distinction des espèces, par Victor Audouin. Histoire naturelle, Tome premier, Quatrième Partie, pp 203–212Google Scholar
  4. Baker AN (1967) Two new echinoids from Northern New Zealand, including a new species of Diadema. Trans R Soc New Zeal, Zool 8:239–245Google Scholar
  5. Blainville HM (1830) Zoophytes. In: Levrault FG (ed) Dictionnaire des sciences naturelles, dans lequel on traitre méthodiquement des differéns êtres de la nature, considérés soit en eux-mêmes, d’après l’état actuel de nos connoissances, soit relativement a l’utlité qu’en peuvent retirer la médicine, l’agriculture, le commerce et les arts. Le Normat, ParisGoogle Scholar
  6. Boyko CB (2003) The endemic marine invertebrates of Easter Island: how many species and for how long? In: Loret J, Tanacredi JT (eds) Easter Island. Scientific exploration into the world’s environmental problems in microcosm. Springer, Boston, pp 155–175Google Scholar
  7. Castilla JC, Rozbaczylo N (1987) Marine invertebrates from Easter Island and Salas y Gómez. In: Castilla JC (ed) Islas oceánicas chilenas: conocimiento científico y necesidades de investigaciones. Ediciones Universidad Católica de Chile, pp 191–215Google Scholar
  8. Clark HL (1920) Reports on the scientific results of the expedition to the Eastern Tropical Pacific, in charge of Alexander Agassiz, by the US Fish commission Steamer Albatross, from October 1905 to March 1905. Asteroidea. Mem Mus Comp Zool 39(3):70–154Google Scholar
  9. Clark AM (1976) Echinoderms of coral reefs. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, 3rd edn. Academic Press, New York, pp 95–123CrossRefGoogle Scholar
  10. Claustre H, Huot Y, Obernosterer I, Gentili B, Tailliez D, Lewis M (2007) Gross community production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method. Biogeosciences Discuss 4:3089–3121CrossRefGoogle Scholar
  11. Codocero M (1974) Equinodermos de la Isla de Pascua. Boletín del Mus Nac Hist Nat Chile 33:53–63Google Scholar
  12. Coppard SE, Campbell AC (2006) Taxonomic significance of test morphology in the echinoid genera Diadema Gray, 1825 and Echinothrix Peters, 1853 (Echinodermata). Zoosystema 28(1):93–112Google Scholar
  13. Easton EE, Sellanes J, Gaymer CF, Morales N, Gorny M, Berkenpas E (2017) Diversity of deep-sea fishes of the Easter Island Ecoregion. Deep Sea Res Part II Top Stud Oceanogr 137:78–88CrossRefGoogle Scholar
  14. Easton EE, Gorny M, Mecho A, Sellanes J, Gaymer C, Spalding HL, Aburto J (2019) Chile and the Salas y Gómez Ridge. In: Loya Y, Puglise KA, Bridge T (eds) Mesophotic coral ecosystems. Springer, New York. Google Scholar
  15. Fell FJ (1974) The echinoids of Easter Island (Rapa Nui). Pacific Sci 28:147–158Google Scholar
  16. Fernández M, Hormazábal S (2014) Oceanography and marine resources of oceanic islands of the Southeastern Pacific. Lat Am J Aquat Res 42:666–672CrossRefGoogle Scholar
  17. Fernández M, Pappalardo P, Rodriguez Ruiz MC, Castilla JC (2014) Synthesis of the state of knowledge about species richness of macroalgae, macroinvertebrates and fishes in coastal and oceanic waters of Easter and Salas y Gomez islands. Lat Am J Aquat Res 42:760–802. CrossRefGoogle Scholar
  18. Fisher WK (1906) The starfishes of the Hawaiian Islands. Bull Uni Stat Fish Com 23:987–1130Google Scholar
  19. Friedlander AM, Ballesteros E, Beets J, Berkenpas E, Gaymer CF, Gorny M, Sala E (2013) Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile. Aquat Conserv Mar Freshw Ecosyst 23:515–531. CrossRefGoogle Scholar
  20. Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E (2014) The real bounty: marine biodiversity in the Pitcairn Islands. PLoS One 9:e100142. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ghiold J (1989) Species distributions of irregular echinoids. Biol Oceanogr 6(1):79–162. CrossRefGoogle Scholar
  22. Glynn PW, Wellington GM, Riegl B, Olson DB, Borneman E, Wieters E (2007) Diversity and biogeography of the scleractinian coral fauna of Easter Island (Rapa Nui). Pacific Sci 61:67–90. CrossRefGoogle Scholar
  23. Gray JE (1840) A synopsis of the genera and species of the class Hypostoma (Asterias, Linnaeus). Ann Mag Nat Hist 6:275–290CrossRefGoogle Scholar
  24. Irving R, Dawson T (2012) The marine environment of the Pitcairn Islands. A report to global ocean legacy, a project of the Pew Environment Group. Dundee University Press, DundeeGoogle Scholar
  25. Jangoux M (1982) Food and feeding mechanism: Asteroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. CRC Press, Bocca Raton, pp 117–159Google Scholar
  26. John DD (1948) Notes on asteroids in the British museum (natural history) I. The species of Astropecten. Novit Zool 42(3):485–508Google Scholar
  27. Kvile KØ, Taranto GH, Pitcher TJ, Morato T (2014) A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework. Biol Conserv 173:108–120. CrossRefGoogle Scholar
  28. Lamarck JBM (1816) Histoire naturelle des animaux sans vertèbres. Tome troisième. Deterville/Verdière, ParisGoogle Scholar
  29. Larraín A (1995) Biodiversidad de equinodermos chilenos: estado actual del conocimiento y sinopsis biosistemática. Gayana Zool 59:73–96Google Scholar
  30. Liggins L, Gleeson L, Riginos C (2014) Evaluating edge-of-range genetic patterns for tropical echinoderms, Acanthaster planci and Tripneustes gratilla, of the Kermadec Islands, southwest Pacific. Bull Mar Sci 90:379–397. CrossRefGoogle Scholar
  31. Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae iiGoogle Scholar
  32. Ludwig H (1905) Asteroidea. Mem Museum Comp Zool Harv 32:292Google Scholar
  33. Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marsh LM (1974) Shallow-water asterozoans of southeastern Polynesia. Micronesica 10:65–104Google Scholar
  35. McClain CR, Lundsten L (2015) Assemblage structure is related to slope and depth on a deep offshore Pacific seamount chain. Mar Ecol 36:210–220. CrossRefGoogle Scholar
  36. Mecho A, Billett DSM, Ramirez-Llodra E, Aguzzi J, Tyler PA, Company JB (2014) First records, rediscovery and compilation of deep-sea echinoderms in the middle and lower continental slope in the Mediterranean Sea. Sci Mar 78:281–302. CrossRefGoogle Scholar
  37. Michelin H (1862) Annex A. Echinides et Stellerides. In: Maillard L (eds). Notes sur l’Île de la Réunion (Bourbon). Palais Royal, Galerie D’Orléans, Paris, pp 1–7Google Scholar
  38. Mooi R, Munguia A (2014) Sea urchins of the Philippines. In: Williams GC, Gosliner TM (eds) The coral triangle 2011 Hearst Philippine Biodiversity Expedition. California Academy of Sciences, San Francisco, pp 205–228Google Scholar
  39. Mortensen T (1903) Lissodiadema. Nouveau genre de Diadematides. Rev Suisse Zool 11:393–398CrossRefGoogle Scholar
  40. Mortensen T (1927) Handbook of the echinoderms of the British isles. Oxford University Press, OxfordCrossRefGoogle Scholar
  41. Müller J, Troschel FH (1842) System der Asteriden.1. Asteriae. 2. Ophiuridae. Braunschweig, ViewegGoogle Scholar
  42. Parin N, Mironov AN, Nesis KN (1997) Biology of the Nazca and Sala y Gomez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. Adv Mar Biol 32:145–242. CrossRefGoogle Scholar
  43. Paulay G (1989) Marine invertebrates of the Pitcairn Islands: species composition and biogeography of corals, molluscs, and echinoderms. Atoll Res Bull 326:2–29CrossRefGoogle Scholar
  44. Perrier E (1881) Report on the results of dredging in the Gulf of Mexico and in the Caribbean Sea, 1877–1879, by the United States Coastal Survey Steamer Blake. Bull Mus Comp Zool 9:1–31Google Scholar
  45. Peters W (1852) Ubersicht der seesterne (Asteridae) von Mossambique. Bericht über die zur bekanntmachung geeigneten verhandlungen der konigl. Akademie der Wissenschaften zu Berlin 1852:177–178Google Scholar
  46. Quimpo TJR, Cabaitan PC, Olavides RDD, Dumalagan EE, Munar J, Siringan FP (2018) Preliminary observations of macrobenthic invertebrates and megafauna communities in the upper mesophotic coral ecosystems in Apo Reef Natural Park, Philippines. Raff Bull Zool 66:1–11Google Scholar
  47. Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011) Man and the last great wilderness: human impact on the deep sea. PLoS One 6:e22588. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ras J, Claustre H, Uitz J (2008) Spatial variability of phytoplankton pigment distributions in the subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5:353–369CrossRefGoogle Scholar
  49. Rowe FWE (1977) A new family of Asteroidea (Echinodermata), with the description of five new species and one new subspecies of Asterodiscides. Rec Aust Museum 31:187–233. CrossRefGoogle Scholar
  50. Rowe FWE (1985) Six new species of Asterodiscides A.M. Clark (Echinodermata, Asteroidea), with a discussion of the origin and discussion of the origin and distribution of the Asterodiscididae and other « amphi-Pacific » echinoderms. Bull Mus Natl Hist Nat 7:531–577Google Scholar
  51. Rowe FWE, Gates J (1995) Echinodermata. In: Wells A (ed) Zoological catalogue of Australia 33. CSIRO, Melbourne, pp 63–72Google Scholar
  52. Samadi S, Schlacher T, Richer De Forges B (2007) Seamount benthos. In: Picher TJ et al (eds) Seamounts: ecology, fisheries, and conservation, vol 12. Blackwell, Oxford, pp 117–140CrossRefGoogle Scholar
  53. Santiañez W, Macaya E, Lee K, Cho GY, Boo SM, Kogame K (2018) Taxonomic reassessment of the Indo-Pacific Scytosiphonaceae (Phaeophyceae): Hydroclathrus rapanuii sp. nov. and Chnoospora minima from Easter Island, with proposal of Dactylosiphon gen. nov. and Pseudochnoospora gen. nov. Bot Mar 61:47–64. CrossRefGoogle Scholar
  54. Schlacher TA, Rowden AA, Dower JF, Consalvey M (2010) Seamount science scales undersea mountains: new research and outlook. Mar Ecol 31:1–13. CrossRefGoogle Scholar
  55. Schultz HA (2015) Echinoidea: with pentameral symmetry. In: Schimdt-Rhaesa (ed). De Gruyter, BerlinGoogle Scholar
  56. Serafy DK (1971) A new species of Clypeaster (Echinodermata, Echinoidea) from San Felix Island, with a key to the recent species of the eastern Pacific Ocean. Pac Sci 25:165–170Google Scholar
  57. Shiell GR, Knott B (2010) Aggregations and temporal changes in the activity and bioturbation contribution of the sea cucumber Holothuria whitmaei (Echinodermata: Holothuroidea). Mar Ecol Prog Ser 415:127–139. CrossRefGoogle Scholar
  58. Soares MDO, Cruz Lopes Tavares T, Bastos de Macedo Carneiro P (2018) Mesophotic ecosystems: distribution, impacts and conservation in the South Atlantic. Divers Distrib:21–41.
  59. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD, Manus MC, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  60. Stock K (2004) Seamount invertebrates: composition and vulnerability. In: Morato T, Pauly D (eds) Seamounts: biodiversity and fisheries. Univ. British Columbia. Fisheries Centre Research Reports, pp 25–32Google Scholar
  61. Toha A, Sutiman B, Luchman H, Nashi W, Robi B, Suhaemi Aji A (2017) Biology of the commercially used sea urchin Tripneustes gratilla (Linnaeus, 1758) (Echinoidea: Echinodermata). Ocean Life 1:1–10. CrossRefGoogle Scholar
  62. Wilson RR, Smith KL, Rosenblatt RH (1985) Megafauna associated with bathyal seamounts in the central North Pacific Ocean. Deep Sea Res Part A, Oceanogr Res Pap 32:1243–1254. CrossRefGoogle Scholar
  63. Yanez E, Silva C, Vega R, Espindola F, Alvarez L, Silva N, Palma S, Salinas S, Menschel E, Haeussermann V, Soto D, Ramirez N (2009) Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts, Chile. Lat Am J Aquat Res 37:555–570. CrossRefGoogle Scholar
  64. Ziesenhenne FC (1963) A new sea-star from Easter Island. Ann Mag Nat Hist Ser 13(6):461–464. CrossRefGoogle Scholar
  65. Zigler KS, Byrne M, Raff EC, Lessios HA, Raff RA (2012) Natural hybridization in the sea urchin genus Pseudoboletia between species without apparent barriers to gamete recognition. Evolution 66:1695–1708. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  2. 2.School of Environmental, Earth, and Marine SciencesUniversity of Texas Rio Grande ValleyBrownsvilleUSA
  3. 3.Oceana Inc. ChileSantiagoChile
  4. 4.Smithsonian InstitutionWashingtonUSA

Personalised recommendations