Advertisement

Marine Biology

, 166:42 | Cite as

The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs

  • Macarena Díaz-Astudillo
  • Mauricio F. LandaetaEmail author
  • Valentina Bernal-Durán
  • Manuel I. Castillo
  • Mónica Alvarado-Niño
  • Darly Alarcón
Original paper

Abstract

Nearshore ichthyoplankton assemblages are constantly influenced by the dynamics of coastal environments (i.e. daily thermal gradients and coastal currents), as well as by regional environmental forcing, such as upwelling events. The aims of this study were to describe larval and postlarval fish assemblages on a short-time scale and relate their intra- and interannual fluctuations to local (< 1 km) and regional (~ 40 km) oceanographic conditions, at two locations of central Chile (Montemar and El Quisco), 50 km distant from each other. Environmentally, spring–summer 2015–2016 was more stable than spring–summer 2016–2017, evidencing weaker temperature fluctuations. In addition, the first season of the study showed positive temperature anomalies that agree with the warm phase of El Niño–Southern Oscillation (ENSO) 2015. Both larval abundance (29,090 ind. 100 m−3 period 1; 23,100 ind 100 m−3 period 2) and postlarval CPUE (6.8 ind. light trap−1 night−1 period 1; 4.8 ind. light trap−1 night−1 period 2) decreased in the second period of study. The structure of the larval assemblages was significantly related to seawater temperature and wind regime, and showed seasonal fluctuations in the abundance, with higher densities in spring, and lower in summer, while postlarval assemblages did not relate significantly to any physical variable. At the interannual scale, the stability of the water column probably promotes fish reproduction, allowing higher larval abundances, while an environmentally unstable year could alter reproductive processes. Local topography influences environmental conditions: El Quisco is more exposed to regional upwelling, and showed higher abundances, species richness, and a predominance of benthic species. Abrupt weekly fluctuations in ichthyoplankton composition and abundance point out that fish larvae can quickly respond to short-term environmental variations.

Notes

Acknowledgements

We want to thank the field work of Sebastián Báez, Mirna Castillo, Hernán Castillo, Andrea Colilef, Jorge E. Contreras, Juanita De Los Ríos, Alejandra Díaz, Pamela Díaz-Astudillo, Bastián Fernández, Gabriela Kanamori, Américo López, Ricardo Maturana, María-Antonia Reculé, Cristian Osses, Victor Molina, Marcos Morales, Valentina Nowajewski, Nicolás Pérez, Javier Polanco, Camilo Rodríguez-Valentino, Javier Vera-Duarte, and Francisca Zavala-Muñoz. We also thank the helpful comments of two anonymous referees who contributed to improve this manuscript. This work was funded by Comisión Nacional de Ciencia y Tecnología, CONICYT, Fondo de Fomento al Desarrollo Científico y Tecnológico [Grant number 1150296].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving animals were performed in accordance with the Ethical Standards of the Universidad de Valparaíso and were approved by the Comité Institucional de Bioética para la Investigación con Animales (CIBICA), code 048-2015.

References

  1. Azeiteiro UM, Bacelar-Nicolau L, Resende P, Goncalvez F, Pereira MJ (2006) Larval fish distribution in shallow coastal waters off North Western Iberia (NE Atlantic). Estuar Coast Shelf Sci 69:554–566.  https://doi.org/10.1016/j.ecss.2006.05.023 CrossRefGoogle Scholar
  2. Balbontín F, Pérez R (1979) Modalidad de postura, huevos y estados larvales de Hypsoblennius sordidus (Bennett) en la Bahía de Valparaíso (Blenniidae: Perciformes). Rev Biol Mar 16:311–318Google Scholar
  3. Balbontín F, Pérez R (1980) Descripción de los estados larvales de Normanichthys crockeri Clark (Perciformes: Normanichthyidae) del área de Valparaíso, Chile. Rev Biol Mar 17:81–95Google Scholar
  4. Carassou L, Ponton D (2007) Spatio-temporal structure of pelagic larval and juvenile fish assemblages in coastal areas of New Caledonia, southwest Pacific. Mar Biol 150:697–711.  https://doi.org/10.1007/s00227-006-0389-y CrossRefGoogle Scholar
  5. Carassou L, Ponton D, Mellin C, Galzin R (2008) Predicting the structure of larval fish assemblages by a hierarchical classification of meteorological and water column forcing factors. Coral Reefs 27:867–880.  https://doi.org/10.1007/s00338-008-0388-1 CrossRefGoogle Scholar
  6. Catalán IA, Dunand A, Alvarez I, Alós J, Colinas N, Nash RDM (2014) An evaluation of sampling methodology for assessing settlement of temperate fish in seagrass meadows. Mediterr Mar Sci 15:338–349.  https://doi.org/10.12681/mms.539 CrossRefGoogle Scholar
  7. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, p 192Google Scholar
  8. Díaz-Astudillo M, Castillo MI, Cáceres MA, Plaza G, Landaeta MF (2017) Oceanographic and lunar forcing affects nearshore larval fish assemblages from temperate rocky reefs. Mar Biol Res 13:1015–1023.  https://doi.org/10.1080/17451000.2017.1335872 CrossRefGoogle Scholar
  9. Escribano E, Daneri G, Farías L, Gallardo VA, González HE, Gutiérrez D, Lange CB, Morales CE, Pizarro O, Ulloa O, Braun M (2004) Biological and chemical consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: a synthesis. Deep Sea Res II:2389–2411.  https://doi.org/10.1016/j.dsr2.2004.08.011 CrossRefGoogle Scholar
  10. Félix-Hackradt FC, Hackradt CW, Treviño-Otón J, Segovia-Viadero M, Pérez-Ruzafa A, García-Charton J (2013a) Environmental determinants of fish post-larval distribution in coastal areas of south-west Mediterranean Sea. Estuar Coast Shelf Sci 129:59–72.  https://doi.org/10.1016/j.ecss.2013.05.029 CrossRefGoogle Scholar
  11. Félix-Hackradt FC, Hackradt CW, Treviño-Otón J, Pérez-Ruzafa A, García-Charton J (2013b) Temporal patterns of settlement, recruitment and post-settlement losses in a rocky reef fish assemblage in the South-Western Mediterranean Sea. Mar Biol 160:2337–2352.  https://doi.org/10.1007/s00227-013-2228-2 CrossRefGoogle Scholar
  12. Gray CA, Miskiewicz AG (2000) Larval fish assemblages in South-east Australian coastal waters: seasonal and spatial structure. Estuar Coast Shelf Sci 50:549–570.  https://doi.org/10.1006/ecss.1999.0595 CrossRefGoogle Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  14. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek M, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241.  https://doi.org/10.1111/j.1461-0248.2005.00871.x CrossRefPubMedGoogle Scholar
  15. Hernández-Miranda E, Palma AT, Ojeda FP (2003) Larval fish assemblages in nearshore coastal waters off central Chile: temporal and spatial patterns. Estuar Coast Shelf Sci 56:1075–1092.  https://doi.org/10.1016/S0272-7714(02)00308-6 CrossRefGoogle Scholar
  16. Hernández-Miranda E, Veas R, Espinoza CV, Thorrold SR, Ojeda FP (2009) The use of otoliths and larval abundance for studying the spatial ecology of the blenny Scartichthys viridis (Valenciennes, 1836) in coastal central Chile. Rev Biol Mar Oceanogr 44:619–633.  https://doi.org/10.4067/S0718-19572009000300009 CrossRefGoogle Scholar
  17. Herrera GA, Llanos-Rivera A, Landaeta MF (2007) Larvae of the sand stargazer Sindoscopus australis and notes on the development of Dactyloscopidae (Perciformes: Blennioidei). Zootaxa 1401:63–68.  https://doi.org/10.11646/zootaxa.1401.4 CrossRefGoogle Scholar
  18. Hickford MJH, Schiel DR (1999) Evaluation of the performance of light traps for sampling fish larvae in inshore temperate waters. Mar Ecol Prog Ser 186:293–302.  https://doi.org/10.3354/meps186293 CrossRefGoogle Scholar
  19. Hu S, Fedorov AV (2017) The extreme El Niño of 2015–2016 and the end of the global warming hiatus. Geophys Res Lett 44:3816–3824.  https://doi.org/10.1002/2017GL072908 CrossRefGoogle Scholar
  20. Juanes F (2007) Role of habitat in mediating mortality during the post-settlement transition phase of temperate marine fishes. J Fish Biol 70:661–677.  https://doi.org/10.1111/j.1095-8649.2007.01394.x CrossRefGoogle Scholar
  21. Kingsford MJ, Finn M (1997) The influence of phase of the moon and physical processes on the input of presettlement fishes to coral reefs. J Fish Biol 51(Suppl A):176–205CrossRefGoogle Scholar
  22. Kirincich AR, Barth JA, Grantham BA, Menge BA, Lubchenco J (2005) Wind driven inner-shelf circulation off central Oregon during summer. J Geophys Res 110:C10S03.  https://doi.org/10.1029/2004jc002611 CrossRefGoogle Scholar
  23. Landaeta MF, Veas R, Letelier J, Castro LR (2008) Larval fish assemblages off central Chile upwelling ecosystem. Rev Biol Mar Oceanogr 43:569–584.  https://doi.org/10.4067/S0718-19572008000300016 CrossRefGoogle Scholar
  24. Landaeta MF, Schrebler K, Bustos CA, Letelier J, Balbontín F (2009) Temporal fluctuations of nearshore ichthyoplankton off Valparaíso, central Chile, during the ENSO cycle 1997–2000. Rev Biol Mar Oceanogr 44:571–582.  https://doi.org/10.4067/S0718-19572009000300005 CrossRefGoogle Scholar
  25. Lowerre-Barbieri S, Ganias K, Saborido-Rey F, Murua H, Hunter JR (2011) Reproductive timing in marine fishes; variability, temporal scales, and methods. Mar Coast Fish Dyn Manag Ecosyst Sci 3:71–91.  https://doi.org/10.1080/19425120.2011.556932 CrossRefGoogle Scholar
  26. Milicich MK (1994) Dynamic coupling of reef fish replenishment and oceanographic processes. Mar Ecol Prog Ser 110:135–144.  https://doi.org/10.3354/meps110135 CrossRefGoogle Scholar
  27. Montecino V, Astoreca R, Alarcón G, Retamal L, Pizarro G (2004) Bio-optical characteristics and primary productivity during upwelling and non-upwelling conditions in a highly productive coastal ecosystem off central Chile (~ 36°S). Deep Sea Res II 20–21:2413–2426.  https://doi.org/10.1016/j.dsr2.2004.08.012 CrossRefGoogle Scholar
  28. Narváez DA, Poulin E, Leiva G, Hernández E, Castilla JC, Navarrete SA (2004) Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont Shelf Res 24:279–292.  https://doi.org/10.1016/j.csr.2003.09.008 CrossRefGoogle Scholar
  29. Navarrete-Fernández T, Landaeta MF, Bustos CA, Pérez-Matus A (2014) Nest building and description of parental care behavior in a temperate reef fish, Chromis crusma (Pisces: Pomacentridae). Revista Chilena de Historia Natural 87:30.  https://doi.org/10.1186/s40693-014-0030-2 CrossRefGoogle Scholar
  30. NOAA (2017) Cold and warm episodes by season. National Weather Service, Climate Prediction Center. (http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). Accessed 22 Jan 2018
  31. Orellana MC, Balbontín F (1983) Estudio comparativo de las larvas de Clupeiformes de la costa de Chile. Rev Biol Mar 19:1–46Google Scholar
  32. Pattrick P, Strydom NA (2014) The effects of exposure of sandy beach surf zones on larval fishes. J Fish Biol 84:1354–1376.  https://doi.org/10.1111/jfb.12360 CrossRefPubMedGoogle Scholar
  33. Pattrick P, Strydom NA (2017) Variability in spatial and temporal occurrence of presettlement and settlement-stage fishes associated with shallow reefs. J Fish Biol 90:847–866.  https://doi.org/10.1111/jfb.13198 CrossRefPubMedGoogle Scholar
  34. Pérez R (1979) Desarrollo postembrionario de Tripterygion chilensis Cancino 1955, en la Bahía de Valparaíso (Tripterygiidae: Perciformes). Rev Biol Mar 16:319–329Google Scholar
  35. Pérez R (1981) Desarrollo embrionario y larval de los pejesapos Sicyases sanguineus y Gobiesox marmoratus en la bahía de Valparaíso, Chile, con notas sobre su reproducción (Gobiesocidae: Pisces). Investig Mar 9:1–24Google Scholar
  36. Peterson WT, Bellantoni DC (1987) Relationships between water-column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off central Chile. S Afr J Mar Sci 5:411–421.  https://doi.org/10.2989/025776187784522748 CrossRefGoogle Scholar
  37. Poulin E, Palma AT, Leiva G, Narvaez D, Pacheco R, Navarrete SA, Castilla JC (2002) Avoiding offshore transport of competent larvae during upwelling events: the case of the gastropod Concholepas concholepas in central Chile. Limnol Oceanogr 47:1248–1255.  https://doi.org/10.4319/lo.2002.47.4.1248 CrossRefGoogle Scholar
  38. Pulgar J, Alvarez M, Morales J, Garcia-Huidobro M, Aldana M, Ojeda FP, Pulgar VM (2011) Impact of oceanic upwelling on morphometric and molecular indices on an intertidal fish Scartichthys viridis (Blenniidae). Mar Freshw Behav Phys 44:33–42.  https://doi.org/10.1080/10236244.2010.533512 CrossRefGoogle Scholar
  39. Rodriguez-Graña L, Castro LR (2003) Ichthyoplankton distribution off the Peninsula Mejillones, Chile (23°S, 71°W), under variable hydrographic conditions during the austral summer and winter of the 1997 El Niño. Hydrobiologia 501:59–73.  https://doi.org/10.1023/A:1026203218373 CrossRefGoogle Scholar
  40. Roussel E, Crec’Hriou R, Lenfant P, Mader J, Planes S (2010) Relative influences of space, time and environment on coastal ichthyoplankton assemblages along a temperate rocky shore. J Plankton Res 32:1443–1457.  https://doi.org/10.1093/plankt/fbq056 CrossRefGoogle Scholar
  41. Sánchez-Velasco L, Shirasago B, Cisneros-Mata MA, Avalos-García C (2000) Spatial distribution of small pelagic fish larvae in the Gulf of California and its relation to the El Niño 1997–1998. J Plankton Res 22:1611–1618.  https://doi.org/10.1093/plankt/22.8.1611 CrossRefGoogle Scholar
  42. Shaffer G, Pizarro O, Djurfeldt L, Salinas S, Rutllant J (1997) Circulation and low-frequency variability near the chilean coast: remotely forced fluctuations during the 1991–92 El Niño. J Phys Oceanogr 27(2):217–235.  https://doi.org/10.1175/1520-0485(1997)027%3c0217:CALFVN%3e2.0.CO;2 CrossRefGoogle Scholar
  43. Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW (2014) Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob Biogeochem Cycles 28:181–196.  https://doi.org/10.1002/2013GB004743 CrossRefGoogle Scholar
  44. Sponaugle S, Paris C, Walter KD, Kourafalou V, D’Alessandro E (2012) Observed and modeled larval settlement of a reef fish to the Florida Keys. Mar Ecol Prog Ser 453:201–212.  https://doi.org/10.1371/journal.pone.0108871 CrossRefGoogle Scholar
  45. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA (2014) Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile. PLoS One 9:e110841.  https://doi.org/10.1371/journal.pone.0110841 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortés M, Dumont CP, Escribano R, Fernández M, Gajardo JA, Gaymer CF, Gomez I, González AE, González HE, Haye PA, Illanes J-E, Iriarte JL, Lancellotti DA, Luna-Jorquera G, Luxoro C, Manríquez PH, Marín V, Muñoz P, Navarrete SA, Pérez E, Poulin E, Sellanes J, Sepúlveda HH, Stotz W, Tala F, Thomas A, Vargas CA, Vásquez JA, Vega JMA (2007) The Humboldt current system of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Ocean Mar Biol Ann Rev 45:194–344Google Scholar
  47. Valles H, Sponaugle S, Oxenford HA (2001) Larval supply to a marine reserve and adjacent fished area in the Soufriere Marine Management Area, St Lucia, West Indies. J Fish Biol 59(Suppl A):152–177.  https://doi.org/10.1111/j.1095-8649.2001.tb01384.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Macarena Díaz-Astudillo
    • 1
    • 2
  • Mauricio F. Landaeta
    • 1
    • 3
    Email author
  • Valentina Bernal-Durán
    • 1
    • 4
  • Manuel I. Castillo
    • 3
    • 5
    • 6
  • Mónica Alvarado-Niño
    • 5
    • 6
    • 7
  • Darly Alarcón
    • 5
  1. 1.Laboratorio de Ictioplancton (LABITI), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  2. 2.Programa de Doctorado en Oceanografía, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  3. 3.Centro de Observación Marino para Estudios de Riesgo en Ambientes Costeros (COSTA-R), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  4. 4.Programa de Doctorado en Ciencias mención Ecología y Biología Evolutiva, Facultad de Ciencias, Departamento de Ciencias EcológicasUniversidad de ChileSantiagoChile
  5. 5.Laboratorio de Oceanografía Física y Satelital (LOFISAT), Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  6. 6.Centro de Investigación Oceanográfica COPAS Sur-AustralUniversidad de ConcepciónConcepciónChile
  7. 7.Programa de Magíster en Oceanografía, Escuela de Ciencias del Mar, Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de Valparaíso, Pontificia Universidad Católica de ValparaísoViña del MarChile

Personalised recommendations