Advertisement

Marine Biology

, 165:148 | Cite as

Finfish vs jellyfish: complimentary feeding patterns allow threespine stickleback Gasterosteus aculeatus and common jellyfish Aurelia aurita to co-exist in a Danish cove

  • Anastasia Yurtseva
  • Florian Lüskow
  • Marion Hatton
  • Adèle Doucet
  • Dmitry Lajus
Original paper

Abstract

The threespine stickleback Gasterosteus aculeatus and the common jellyfish Aurelia aurita are keystone species in many marine ecosystems, including the shallow cove Kertinge Nor, in Denmark. Both species feed on zooplankton, raising the potential for competition between them. While jellyfish are tactile filtering planktivores, sticklebacks are visual feeders that actively detect, attack and capture prey. The study compared clearance rates (Cl) and tested the hypothesis that jellyfish are more efficient in feeding on small prey and sticklebacks on larger prey animals. Individual (Clind) and population (Clpop) feeding characteristics were studied under good visual conditions. Individual sticklebacks (TL = 44 mm) demonstrated 14–51-fold higher Clind than jellyfish (d = 27 mm) when feeding on small (< 1 mm) and medium (1–4 mm) sized prey and threefold higher Clind when feeding on larger prey (4–11 mm). Clpop was calculated for both species based on their densities in the cove. When consuming small- and medium-sized prey in May–July, Clpop for stickleback was 2–20-fold higher than for jellyfish, but in August following a decrease in fish density, Clpop was higher for jellyfish. This may imply higher predation pressure from stickleback on zooplankton in Kertinge Nor at the beginning of the season, though the common jellyfish was considered earlier as a species controlling zooplankton there. The two competing species likely coexist in the cove due to different seasonal cycles of abundance and thus different seasonal patterns of plankton consumption.

Notes

Acknowledgements

We are very grateful to H. U. Riisgård for comprehensive help, discussions and advice during and after the current study. We further wish to express our thanks to K. Lundgreen, D. Zalacáin Domench and N. Jeune for help with the cultivation of phyto- and zooplankton for our experiments and technical assistance during laboratory and field work. Thanks go to B. Lüskow who created the map, S. Torres Ortiz for the sketch used in Fig. 2, K. Anderson Hansen and K. Alexander for English language editing. We are very grateful to associate editor—J. Purcell and two anonymous reviewers for their invaluable help in preparing the manuscript for publication.

Funding

This study was financially supported by Saint-Petersburg State University (NIR 1.42.1291.2014), the Danish Agency for Universities and Internationalisation and the Federal Agency for Scientific Organizations (FASO Russia, project AAAA-A17-117030310197-7).

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

Human or animal rights

This study includes the use of a fish species from the Gasterosteidae family and invertebrate Crustaceans and Scyphozoa; all applicable international, national, and institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2018_3407_MOESM1_ESM.pdf (264 kb)
Supplementary material 1 (PDF 264 kb)

References

  1. Acuña JL, López-Urrutia Á, Colin S (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629.  https://doi.org/10.1126/science.1205134 CrossRefPubMedGoogle Scholar
  2. Allen JRM, Wootton RJ (1984) Temporal patterns in diet and rate of food consumption of the three-spined stickleback (Gasterosteus aculeatus L.) in Llyn Frongoch, an upland Welsh lake. Freshw Biol 14(4):335–346.  https://doi.org/10.1111/j.1365-2427.1984.tb00158.x CrossRefGoogle Scholar
  3. Arai MN (2001) Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451:69–87.  https://doi.org/10.1023/A:1011840123140 CrossRefGoogle Scholar
  4. Baden S, Emanuelsson A, Phil L, Svensson C-J, Åberg P (2012) Shift in seagrass food web structure over decades is linked to overfishing. Mar Ecol Prog Ser 451:61–73.  https://doi.org/10.3354/meps09585 CrossRefGoogle Scholar
  5. Bailey KM, Batty RS (1983) A laboratory study of predation of Aurelia aurita on larval herring (Clupea harengus): experimental observations compared with model predictions. Mar Biol 72(3):295–301.  https://doi.org/10.1007/BF00396835 CrossRefGoogle Scholar
  6. Båmstedt M, Martinussen B, Matsakis S (1994) Trophodynamics of two scyphozoan jellyfishes Aurelia aurita and Cyanea capillata in western Norway. ICES J Mar Sci 51(4):369–382.  https://doi.org/10.1006/jmsc.1994.1039 CrossRefGoogle Scholar
  7. Barber I, Nettleship S (2010) From ‘trash fish’ to supermodel: the rise and rise of the threespined stickleback in evolution and ecology. Biologist 57:15–21Google Scholar
  8. Baxter EJ, Rodger HD, McAllen R, Doyle TK (2011a) Gill disorders in marine-farmed salmon: investigating the role of hydrozoan jellyfish. Aquac Environ Interact 1:245–257.  https://doi.org/10.3354/aei00024 CrossRefGoogle Scholar
  9. Baxter EJ, Sturt MM, Ruane NM, Doyle TK, McAllen R, Harman L, Rodger HD (2011b) Gill damage to Atlantic salmon (Salmo salar) caused by the common jellyfish (Aurelia aurita) under experimental challenge. PLoS One 6(4):e18529.  https://doi.org/10.1371/journal.pone.0018529 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bergström U, Olsson J, Casini M, Eriksson BK, Fredriksson R, Wennhage H, Appelberg M (2015) Stickleback increase in the Baltic Sea—a thorny issue for coastal predatory fish. Estuar Coast Shelf Sci 163:134–142.  https://doi.org/10.1016/j.ecss.2015.06.017 CrossRefGoogle Scholar
  11. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150(3692):28–35.  https://doi.org/10.1126/science.150.3692.28 CrossRefPubMedGoogle Scholar
  12. Brulinska D, Olenycz M, Ziólkowska M, Mudrak-Cegiolka S, Wolowicz M (2016) Moon jellyfish, Aurelia aurita, in the Gulf of Gdansk: threatening predator or not? Boreal Environ Res 21:528–540Google Scholar
  13. Byström P, Bergström U, Hjälten A, Ståhl S, Jonsson D, Olsson J (2015) Declining coastal piscivore populations in the Baltic Sea: where and when do sticklebacks matter? Ambio 44:462–471.  https://doi.org/10.1007/s13280-015-0665-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Candolin U (2004) Effects of algae cover on egg acquisition in male three-spined stickleback. Behaviour 141:1389–1399.  https://doi.org/10.1163/1568539042948268 CrossRefGoogle Scholar
  15. Chittenden CM, Sweeting R, Neville CM, Young K, Galbraith M, Carmack E, Vagle S, Dempsey M, Eert J, Beamish RJ (2018) Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms. Estuar Coast Shelf Sci 200:335–348.  https://doi.org/10.1016/j.ecss.2017.11.021 CrossRefGoogle Scholar
  16. Conley KR, Sutherland KR (2015) Commercial fishers’ perceptions of jellyfish interference in the Northern California Current. ICES J Mar Sci 72(5):1565–1575.  https://doi.org/10.1093/icesjms/fsv007 CrossRefGoogle Scholar
  17. Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121(2):327–334.  https://doi.org/10.1007/BF00346741 CrossRefGoogle Scholar
  18. Cowan JH Jr, Houde ED (1993) Relative predation potentials of scyphomedusae, ctenophores and planktivorous fish on ichthyoplankton in Chesapeake Bay. Mar Ecol Prog Ser 95:55–65CrossRefGoogle Scholar
  19. Crawford RE (2016) Occurrence of a gelatinous predator (Cyanea capillata) may affect the distribution of Boreogadus saida, a key Arctic prey fish species. Polar Biol 39:1049–1055.  https://doi.org/10.1007/s00300-015-1779-8 CrossRefGoogle Scholar
  20. Demchuk A, Ivanov M, Ivanova T, Polyakova N, Mas-Marti E, Lajus D (2015) Feeding patterns in seagrass beds of three-spined stickleback Gasterosteus aculeatus juveniles at different growth stages. J Mar Biol Assoc UK 95(8):1635–1643.  https://doi.org/10.1017/S0025315415000569 CrossRefGoogle Scholar
  21. Demchuk AS, Ivanov MV, Ivanova TS, Polyakova NV, Golovin PV, Lajus DL (2018) Feeding of the threespine stickleback Gasterosteus aculeatus (Linnaeus, 1758) in spawning grounds. Trudy KNC RAN 4:42–58.  https://doi.org/10.17076/them818 CrossRefGoogle Scholar
  22. Donadi S, Austin ÅN, Bergström U, Eriksson BK, Hansen JP, Jacobson P, Sundblad G, van Regteren M, Eklöf JS (2017) A cross-scale trophic cascade from large predatory fish to algae in coastal ecosystems. Proc Biol Sci 284(1859):1–10.  https://doi.org/10.1098/rspb.2017.0045 CrossRefGoogle Scholar
  23. Elliott JK, Leggett WC (1996) The effect of temperature on predation rates of a fish (Gasterosteus aculeatus) and a jellyfish (Aurelia aurita) on larval capelin (Mallotus villosus). Can J Fish Aquat Sci 53(5):1393–1402.  https://doi.org/10.1139/f96-049 CrossRefGoogle Scholar
  24. Elliott JK, Leggett WC (1997) Influence of temperature on size-dependent predation by a fish (Gasterosteus aculeatus) and a jellyfish (Aurelia aurita) on larval capelin (Mallotus villosus). Can J Fish Aquat Sci 54(12):2759–2766.  https://doi.org/10.1139/f97-190 CrossRefGoogle Scholar
  25. El-Sabaawi RW, Warbanski ML, Rudman SM, Hovel R, Matthews B (2016) Investment in boney defensive traits alters organismal stoichiometry and excretion in fish. Oecologia 181(4):1209–1220.  https://doi.org/10.1007/s00442-016-3599-0 CrossRefPubMedGoogle Scholar
  26. Eriksson BK, Rubach A, Batsleer J, Hillebrand H (2012) Cascading predator control interacts with productivity to determine the trophic level of biomass accumulation in a benthic food web. Ecol Res 27:203–210.  https://doi.org/10.1007/s11284-011-0889-1 CrossRefGoogle Scholar
  27. Flynn BA, Richardson AJ, Brierley AS, Boyer DC, Axelsen BE, Scott L, Moroff NE, Kainge PI, Tjizoo BM, Gibbons MJ (2012) Temporal and spatial patterns in the abundance of jellyfish in the northern Benguela upwelling ecosystem and their link to thwarted pelagic fishery recovery. Afr J Mar Sci 34(1):131–146.  https://doi.org/10.2989/1814232X.2012.675122 CrossRefGoogle Scholar
  28. Gershwin L (2013) Stung! On jellyfish blooms and future of the ocean. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  29. Gibson G (2005) The synthesis and evolution of a supermodel. Science 307(5717):1890–1891.  https://doi.org/10.1126/science.1109835 CrossRefPubMedGoogle Scholar
  30. Gill AB, Hart PJB (1994) Feeding behaviour and prey choice of the threespined stickleback: the interacting effects of prey size, fish size and stomach fullness. Anim Behav 47:921–932.  https://doi.org/10.1006/anbe.1994.1124 CrossRefGoogle Scholar
  31. Gill AB, Hart PJB (1998) Stomach capacity as a directing factor in prey size selection of three-spined stickleback. J Fish Biol 53:897–900.  https://doi.org/10.1111/j.1095-8649.1998.tb01844.x CrossRefGoogle Scholar
  32. Goldstein J, Riisgård HU (2016) Population dynamics and factors controlling somatic degrowth of the common jellyfish, Aurelia aurita, in a temperate semi-enclosed cove (Kertinge Nor, Denmark). Mar Biol 163:33–44.  https://doi.org/10.1007/s00227-015-2802-x CrossRefGoogle Scholar
  33. Graham WM, Kroutil RM (2001) Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. J Plankton Res 23(1):67–74.  https://doi.org/10.1093/plankt/23.1.67 CrossRefGoogle Scholar
  34. Graham WM, Pages F, Hamner WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199–212.  https://doi.org/10.1023/A:1011876004427 CrossRefGoogle Scholar
  35. Hansson LJ (2006) A method for in situ estimation of prey selectivity and predation rate in large plankton, exemplified with the jellyfish Aurelia aurita (L.). J Exp Mar Biol Ecol 328:113–126.  https://doi.org/10.1016/j.jembe.2005.07.002 CrossRefGoogle Scholar
  36. Hansson LJ, Moeslund O, Kiørboe T, Riisgård HU (2005) Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Mar Ecol Prog Ser 304:117–131.  https://doi.org/10.3354/meps304117 CrossRefGoogle Scholar
  37. Hart PJB, Gill AB (1992) Constraints on prey size selection by the three-spined stickleback: energy requirements and the capacity and fullness of the gut. J Fish Biol 40:205–218.  https://doi.org/10.1111/j.1095-8649.1992.tb02567.x CrossRefGoogle Scholar
  38. Helenius LK, Borg JPG, Nurminen L, Leskinen E, Lehtonen H (2013) The effects of turbidity on prey consumption and selection of zooplanktivorous Gasterosteus aculeatus L. Aquat Ecol 47:349–356.  https://doi.org/10.1007/s10452-013-9448-x CrossRefGoogle Scholar
  39. Helenius LK, Aymà Padrós A, Leskinen E, Lehtonen H, Nurminen L (2015) Strategies of zooplanktivory shape the dynamics and diversity of littoral plankton communities: a mesocosm approach. Ecol Evol 5(10):2021–2035.  https://doi.org/10.1002/ece3.1488 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hosia A, Falkenhaug T, Naustvoll LJ (2014) Trends in abundance and phenology of Aurelia aurita and Cyanea spp. at a Skagerrak location, 1992–2011. Mar Ecol Prog Ser 498:103–115.  https://doi.org/10.3354/meps10619 CrossRefGoogle Scholar
  41. Ibrahim AA, Huntingford FA (1989) The role of visual cues in prey selection in three-spined sticklebacks, Gasterosteus aculeatus. Ethology 81:265–272.  https://doi.org/10.1111/j.1439-0310.1989.tb00772.x CrossRefGoogle Scholar
  42. Ivanova TS, Ivanov MV, Golovin PV, Polyakova NV, Lajus DL (2016) The White Sea threespine stickleback population: spawning habitats, mortality, abundance. Evol Ecol Res 17(3):301–315Google Scholar
  43. Jakubavičiūtė E, Casini M, Ložys L, Olsson J (2017a) Seasonal dynamics in the diet of pelagic fish species in the southwest Baltic Proper. ICES J Mar Sci 12:1–16.  https://doi.org/10.1093/icesjms/fsw224 CrossRefGoogle Scholar
  44. Jakubavičiūtė E, Bergström U, Eklöf JS, Haenel Q, Bourlat SJ (2017b) DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS One 74(3):750–758.  https://doi.org/10.1371/journal.pone.0186929 CrossRefGoogle Scholar
  45. Jurvelius J, Leinikki J, Mamylov V, Pushkin S (1996) Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): a simultaneous up and down-looking echo-sounding study. Fish Res 27(4):227–241.  https://doi.org/10.1016/0165-7836(95)00464-5 CrossRefGoogle Scholar
  46. Kiørboe T, Hirst AG (2014) Shifts in mass scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms. Am Nat 183(4):E118–E130.  https://doi.org/10.1086/675241 CrossRefPubMedGoogle Scholar
  47. Kohler CC, Ney JJ (1982) A comparison of methods for quantitative analysis of feeding selection of fishes. Environ Biol Fish 7(4):363–368.  https://doi.org/10.1007/BF00005571 CrossRefGoogle Scholar
  48. Lankov A, Ojaveer H, Simm M, Põllupüü M, Möllmann C (2010) Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community. J Fish Biol 77(10):2268–2284.  https://doi.org/10.1111/j.1095-8649.2010.02805.x CrossRefPubMedGoogle Scholar
  49. Li KT, Wetterer JK, Hairston NG Jr (1985) Fish size, visual resolution and prey selectivity. Ecology 66(6):1729–1735.  https://doi.org/10.2307/2937368 CrossRefGoogle Scholar
  50. Litvak MK, Leggett WC (1992) Age and size-selective predation on larval fishes: the bigger-is-better hypothesis revisited. Mar Ecol Prog Ser 81(1):13–24.  https://doi.org/10.3354/meps081013 CrossRefGoogle Scholar
  51. Ljunggren L, Sandström A, Bergström U, Mattila J, Lappalainen A, Johansson G, Sundblad G, Casini M, Kaljuste O, Eriksson BK (2010) Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES J Mar Sci 67:1587–1595.  https://doi.org/10.1093/icesjms/fsq109 CrossRefGoogle Scholar
  52. Lüskow F, Riisgård HU (2016) Population predation impact of jellyfish (Aurelia aurita) controls the maximum umbrella size and somatic degrowth in temperate Danish waters (Kertinge Nor and Mariager Fjord). Vie et Milieu 66(3–4):233–243Google Scholar
  53. Manzer JI (1976) Distribution, food, and feeding of the threespine stickleback, Gasterosteus aculeatus, in great central lake, Vancouver Island, with comments on competition for food with juvenile sockeye salmon, Oncorhynchus nerka. Fish Bull 74(3):647–668Google Scholar
  54. McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17(10):480–488.  https://doi.org/10.1016/S0169-5347(02)02579-X CrossRefGoogle Scholar
  55. Meunier CL, Schulz K, Boersma M, Malzahn AM (2013) Impact of swimming behaviour and nutrient limitation on predator–prey interactions in pelagic microbial food webs. J Exp Mar Biol Ecol 446:29–35.  https://doi.org/10.1016/j.jembe.2013.04.015 CrossRefGoogle Scholar
  56. Möller H (1979) Significance of coelenterates in relation to other plankton organisms. Meeresforsch 27:1–18Google Scholar
  57. Möller H (1980) Scyphomedusae as predators and food competitors of larval fish. Meeresforschung 28:90–100Google Scholar
  58. Møller JS (1996) Water masses, stratification and circulation. In: Jørgensen BB, Richardson K (eds) Eutrophication in a coastal ecosystem. Coastal and estuarine studies 52. American Geophys Union, Washington, DC, pp 51–66CrossRefGoogle Scholar
  59. Møller LF, Riisgård HU (2007) Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Mar Ecol Prog Ser 346:167–177.  https://doi.org/10.3354/meps06959 CrossRefGoogle Scholar
  60. Nielsen TG, Hansen PJ (1999) Dyreplankton i danske farvande. TEMA-report from DMU, 28/1999, p 64Google Scholar
  61. Nielsen AS, Pedersen AW, Riisgård HU (1997) Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia 82:297–305.  https://doi.org/10.1080/00364827.1997.10413658 CrossRefGoogle Scholar
  62. Ohata R, Masuda R, Ueno M, Fukunishi Y, Yamashita Y (2011) Effects of turbidity on survival of larval ayu and red sea bream exposed to predation by jack mackerel and moon jellyfish. Fish Sci 77(2):207–215.  https://doi.org/10.1007/s12562-010-0320-9 CrossRefGoogle Scholar
  63. Ojaveer H, Lankov A, Teder M, Simm M, Klais R (2017) Feeding patterns of dominating small pelagic fish in the Gulf of Riga, Baltic Sea. Hydrobiologia 792(1):331–344.  https://doi.org/10.1007/s10750-016-3071-5 CrossRefGoogle Scholar
  64. Olesen NJ (1995) Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Mar Ecol Prog Ser 124(1–3):63–72.  https://doi.org/10.3354/meps124063 CrossRefGoogle Scholar
  65. Olesen NJ, Frandsen K, Riisgård HU (1994) Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Mar Ecol Prog Ser 105:9–18.  https://doi.org/10.3354/meps105009 CrossRefGoogle Scholar
  66. Pawelec AJ, Sapota MR, Skóra ME (2016) Is the body condition of the three-spined stickleback (Gasterosteus aculeatus) determined by the type of food consumed? Oceanol Hydrobiol Stud 45(4):588–599.  https://doi.org/10.1515/ohs-2016-0048 CrossRefGoogle Scholar
  67. Peltonen H, Vinni M, Lappalainen A, Ponni J (2004) Spatial feeding patterns of herring (Clupea harengus L.), sprat (Sprattus sprattus L.), and the three-spined stickleback (Gasterosteus aculeatus L.) in the Gulf of Finland, Baltic Sea. ICES J Mar Sci 61(6):966–971.  https://doi.org/10.1016/j.icesjms.2004.06.008 CrossRefGoogle Scholar
  68. Pepin P, Shears TH, De Lafontaine Y (1992) Significance of body size to the interaction between a larval fish (Mallotus villosus) and a vertebrate predator (Gasterosteus aculeatus). Mar Ecol Prog Ser 81(1):1–12.  https://doi.org/10.3354/meps081001 CrossRefGoogle Scholar
  69. Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms. J Mar Biol Assoc UK 85(3):461–476.  https://doi.org/10.1017/S0025315405011409 CrossRefGoogle Scholar
  70. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451(1–3):27–44.  https://doi.org/10.1023/A:1011883905394 CrossRefGoogle Scholar
  71. Quesenberry NJ, Allen PJ, Cech JJ Jr (2007) The influence of turbidity on three-spined stickleback foraging. J Fish Biol 70(3):965–972.  https://doi.org/10.1111/j.1095-8649.2007.01350.x CrossRefGoogle Scholar
  72. Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24(6):312–322.  https://doi.org/10.1016/j.tree.2009.01.010 CrossRefPubMedGoogle Scholar
  73. Riisgård HU, Madsen CV (2011) Clearance rates of ephyrae and small medusae of the common jellyfish Aurelia aurita offered different types of prey. J Sea Res 65(1):51–57.  https://doi.org/10.1016/j.seares.2010.07.002 CrossRefGoogle Scholar
  74. Riisgård HU, Jürgensen C, Andersen FØ (1996) Case study: kertinge nor. In: Jørgensen BB, Richardson K (eds) Eutrophication in coastal marine ecosystems. Coastal and estuarine studies 52. American Geophys Union, Washington, DC, pp 205–220CrossRefGoogle Scholar
  75. Riisgård HU, Jensen MH, Rask N (2008) Odense Fjord and Kerteminde Fjord/kertinge nor. In: Schiewer U (ed) Ecology of Baltic coastal waters, vol 197. Springer, Berlin, pp 361–394.  https://doi.org/10.1007/978-3-540-73524-3_16 CrossRefGoogle Scholar
  76. Riisgård HU, Barth-Jensen C, Madsen CV (2010) High abundance of the jellyfish Aurelia aurita excludes the invasive ctenophore Mnemiopsis leidyi to establish in a shallow cove (Kertinge Nor, Denmark). Aquat Invasion 5(4):347–356.  https://doi.org/10.3391/ai.2010.5.4.03 CrossRefGoogle Scholar
  77. Sánchez-Gonzáles S, Ruiz-Campos G, Contreras-Balderas S (2001) Feeding ecology and habitat of the three spine stickleback, Gasterosteus aculeatus microcephalus, in a remnant population of northwestern Baja California, Mexico. Ecol Freshw Fish 10(4):191–197.  https://doi.org/10.1034/j.1600-0633.2001.100401.x CrossRefGoogle Scholar
  78. Schneider G (1992) A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous zooplankton—a search for general rules in zooplankton metabolism. Helgol Meeresunters 46:377–388.  https://doi.org/10.1007/BF02367205 CrossRefGoogle Scholar
  79. Shiganova TA (1998) Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish Oceanogr 7(3–4):305–310.  https://doi.org/10.1046/j.1365-2419.1998.00080.x CrossRefGoogle Scholar
  80. Shoji J (2008) Non-size-selective predation on fish larvae by moon jellyfish Aurelia aurita under low oxygen concentrations. Plankton Benthos Res 3:114–117.  https://doi.org/10.3800/pbr.3.114 CrossRefGoogle Scholar
  81. Shoji J, Masuda R, Yamashita Y, Tanaka M (2005) Effect of low dissolved oxygen concentrations on behavior and predation rates on red beam Pagrus major larvae by the jellyfish Aurelia aurita and by juvenile Spanish mackerel Scomberomorus niphonius. Mar Biol 147(4):863–868.  https://doi.org/10.1007/s00227-005-1579-8 CrossRefGoogle Scholar
  82. Short J, Metaxas A, Daigle RM (2013) Predation of larval benthic invertebrates in St George’s Bay, Nova Scotia. J Mar Biol Assoc UK 93(3):591–599.  https://doi.org/10.1017/S0025315412000768 CrossRefGoogle Scholar
  83. Sieben K, Ljunggren L, Bergström U, Eriksson BK (2011a) A meso-predator release of stickleback promotes recruitment of macroalgae in the Baltic Sea. J Exp Mar Biol Ecol 397:79–84.  https://doi.org/10.1016/j.jembe.2010.11.020 CrossRefGoogle Scholar
  84. Sieben K, Rippen AD, Eriksson BK (2011b) Cascading effects from predator removal depend on resource availability in a benthic food web. Mar Biol 158:391–400.  https://doi.org/10.1007/s00227-010-5221567-5 CrossRefPubMedGoogle Scholar
  85. Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13(9):350–355.  https://doi.org/10.1016/S0169-5347(98)01437-2 CrossRefPubMedGoogle Scholar
  86. Sørnes TA, Aksnes DL (2004) Predation efficiency in visual and tactile zooplanktivores. Limnol Oceanogr 49(1):69–75.  https://doi.org/10.4319/lo.2004.49.1.0069 CrossRefGoogle Scholar
  87. Spadinger R, Maier G (1999) Prey selection and diel feeding of the freshwater jellyfish, Craspedacusta sowerbyi. Freshw Biol 41:567–573.  https://doi.org/10.1046/j.1365-2427.1999.00408.x CrossRefGoogle Scholar
  88. Szyper JP (1989) Nutritional depletion of the aquaculture feed organisms Euterpina acutifrons, Artemia sp. and Brachionus plicatilis during starvation. J World Aquac Soc 20(3):162–169CrossRefGoogle Scholar
  89. Thormar J, Hasler-Sheetal H, Baden S, Boström C, Clausen KK, Krause-Jensen D, Olesen B, Ribergaard Rasmussen J, Svensson CJ, Holmer M (2016) Eelgrass (Zostera marina) food web structure in different environmental settings. PLoS One 11(1):e0146479.  https://doi.org/10.1371/journal.pone.0146479 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Uye S, Shimauchi H (2005) Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. J Plankton Res 27(3):237–248.  https://doi.org/10.1093/plankt/fbh172 CrossRefGoogle Scholar
  91. Vinogradov ME, Shushkina EA, Bulgakova YuV (1996) Consumption of zooplankton by the comb jelly Mnemiopsis leidyi and pelagic fishes in the Black Sea. Oceanology 35:523–527Google Scholar
  92. Visser AW, Kiørboe T (2006) Plankton motility patterns and encounter rates. Oecologia 148:538–546.  https://doi.org/10.1007/s00442-006-0385-4 CrossRefPubMedGoogle Scholar
  93. Wetterer JK, Bishop CJ (1985) Planktivore prey selection: the reactive field volume model vs. the apparent size model. Ecology 66:457–464.  https://doi.org/10.2307/1940394 CrossRefGoogle Scholar
  94. Wootton R (1984) A functional biology of sticklebacks. Croom Helm, London, p 261CrossRefGoogle Scholar
  95. Worgan JP, FitzGerald GJ (1981) Diel activity and diet of three sympatric sticklebacks in tidal salt marsh pools. Can J Zool 59(12):2375–2379.  https://doi.org/10.1139/z81-317 CrossRefGoogle Scholar
  96. Zervoudaki S, Nielsen TG, Carstensen J (2009) Seasonal succession and composition of the zooplankton community along an eutrophication and salinity gradient exemplified by Danish waters. J Plankton Res 31(12):1475–1492.  https://doi.org/10.1093/plankt/fbp084 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of IchthyologyZoological Institute RASSt. PetersburgRussia
  2. 2.Department of Ichthyology and HydrobiologySaint-Petersburg State UniversitySt. PetersburgRussia
  3. 3.Marine Biological Research Centre, Department of BiologyUniversity of Southern DenmarkKertemindeDenmark
  4. 4.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  5. 5.Johnson and Johnson Campus de MaigremontVal de ReuilFrance
  6. 6.École de Biologie IndustrielleCergyFrance

Personalised recommendations