Advertisement

Marine Biology

, 165:136 | Cite as

Barcoding and morphometry to identify and assess genetic population differentiation and size variability in loliginid squid paralarvae from NE Atlantic (Spain)

  • Lorena Olmos-Pérez
  • Graham J. Pierce
  • Álvaro Roura
  • Ángel F. González
Original paper

Abstract

Accurate species classification is essential to understand complete life cycles of cephalopods. Identifying freshly caught or fixed loliginid paralarvae to species level with the traditional taxonomic guides is challenging. Therefore, the aim of this work was to identify genetically loliginid paralarvae captured in NW Spain (a region where at least three loliginid species are known to coexist) during 2012, 2013, and 2014, and to seek a means to distinguish the species from each other based on their morphometry. First, the barcoding region (COI gene) was amplified to identify each paralarva, and to obtain population molecular diversity indices and genetic structure for the different species. Afterwards, discriminant analysis (DA) was used to evaluate the performance of the selected morphometric measurements to distinguish among the species previously identified. Molecular analyses revealed three loliginid species (Alloteuthis media, A. subulata, and Loligo vulgaris), with different patterns of molecular diversity. DAs based on body morphometrics correctly categorised 75% of paralarvae to genus (Loligo and Alloteuthis) and 72% of Alloteuthis individuals to species level (A. media and A. subulata). When statolith measurements were included in the morphometric analysis, successful classification increased to 94 and 82%, respectively. The most useful variables for the discrimination of genus were hatching ring length and head width, while tentacle length helped to differentiate A. media from A. subulata. These discriminant functions should be tested with more paralarvae from different origins and seasons to account for body shape plasticity, but suggest a promising result to facilitate loliginid paralarvae identification for future research.

Notes

Acknowledgements

We are indebted to the captain, crew, and technicians of R/V ‘Mytilus’ (IIM, CSIC Vigo) for their assistance in collecting the zooplankton samples. We are grateful to Mariana Cueto for assisting us with laboratory analyses and Lara García Alves for helping us to sort the paralarvae. This study was supported by the project LARECO (CTM-2011-25929) and CALECO (CTM2015-69519-R) funded by the Spanish Ministry of Economy and Competitiveness. Lorena Olmos-Pérez was supported with an FPI grant funded by the Spanish Ministry of Economy and Competitiveness (BES-2012-055651). We would like to thank the reviewers for their suggestions and comments that improved the quality of the manuscript.

Compliance with ethical standards

Ethical approval

This study was performed in accordance with the existing Spanish guidelines and regulations on animal research (Ley 32/2007, November 7th), and was consequently exempt from an ethics review process.

Conflict of interest

All the authors have revised the manuscript critically for important intellectual content and have approved the final version to be published. The authors declare that the research was conducted in the absence of any relationships that could be construed as a potential conflict of interest. We also declare that the manuscript has not been published previously or split up into several parts, neither the data have been fabricated or manipulated.

Supplementary material

227_2018_3387_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1247 kb)

References

  1. Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528.  https://doi.org/10.1016/j.tree.2012.05.009 CrossRefPubMedGoogle Scholar
  2. Altschul SF (2014) BLAST algorithm. In: eLS. Wiley, Chichester, pp 1–4.  https://doi.org/10.1038/npg.els.0005253
  3. Amor MD, Norman MD, Cameron HE, Strugnell JM (2014) Allopatric speciation within a cryptic species complex of Australasian octopuses. PLoS ONE 9:e98982.  https://doi.org/10.1371/journal.pone.0098982 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amor MD, Laptikhovsky V, Norman MD, Strugnell JM (2017) Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena. J Mar Biol Assoc UK 97:753–758.  https://doi.org/10.1017/S0025315415000958 CrossRefGoogle Scholar
  5. Anderson FE (2000) Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol Phylogenet Evol 15:191–214.  https://doi.org/10.1006/mpev.1999.0753 CrossRefPubMedGoogle Scholar
  6. Anderson F, Pilsits A, Clutts S, Laptikhovsky V, Bello G, Balguerias E, Lipiński M, Nigmatulin C, Pereira J, Piatkowski U, Robin J-P, Salman A, Tasende M (2008) Systematics of Alloteuthis (Cephalopoda: Loliginidae) based on molecular and morphometric data. J Exp Mar Bio Ecol 364:99–109.  https://doi.org/10.1016/j.jembe.2008.07.026 CrossRefGoogle Scholar
  7. Arístegui J, Barton ED, Álvarez-Salgado XA, Santos AMP, Figueiras FG, Kifani S, Hernández-León S, Mason E, Machú E, Demarcq H (2009) Sub-regional ecosystem variability in the Canary Current upwelling. Prog Oceanogr 83:33–48.  https://doi.org/10.1016/j.pocean.2009.07.031 CrossRefGoogle Scholar
  8. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48.  https://doi.org/10.1093/oxfordjournals.molbev.a026036 CrossRefPubMedGoogle Scholar
  9. Borges TC (1995) Discriminant analysis of geographic variation in hard structures of Todarodes sagittatus (Lamarck 1798) from North Atlantic Ocean. ICES Mar Sci Symp 199:433–440Google Scholar
  10. Braga R, Crespi-Abril AC, Van der Molen S, Bainy MCRS, Ortiz N (2017) Analysis of the morphological variation of Doryteuthis sanpaulensis (Cephalopoda: Loliginidae) in Argentinian and Brazilian coastal waters using geometric morphometrics techniques. Mar Biodivers 47:1–8.  https://doi.org/10.1007/s12526-017-0661-z CrossRefGoogle Scholar
  11. Bucklin A (2000) Methods for population genetic analysis of zooplankton. In: Harris R, Wiebe P, Lenz J, Skjoldal H-R, Huntley M (eds) ICES zooplankton methodology manual. Elsevier B.V, San Diego, pp 553–570Google Scholar
  12. Bucklin A, Smolenack SB, Bentley AM, Wiebe PH (1997) Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the NW Atlantic based on mtDNA sequences for cytochrome b and cytochrome oxidase I. J Plankton Res 19:1763–1781.  https://doi.org/10.1093/plankt/19.11.1763 CrossRefGoogle Scholar
  13. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Ann Rev Mar Sci 3:471–508.  https://doi.org/10.1146/annurev-marine-120308-080950 CrossRefPubMedGoogle Scholar
  14. Chen CS, Pierce GJ, Wang J, Robin JP, Poulard JC, Pereira J, Zuur AF, Boyle PR, Bailey N, Beare DJ, Jereb P, Ragonese S, Mannini A, Orsi-Relini L (2006) The apparent disappearance of Loligo forbesi from the south of its range in the 1990s: Trends in Loligo spp. abundance in the northeast Atlantic and possible environmental influences. Fish Res 78:44–54.  https://doi.org/10.1016/j.fishres.2005.12.002 CrossRefGoogle Scholar
  15. Clarke MR (1978) The cephalopod statolith—an introduction to its form. J Mar Biol Assoc UK 58:701–712.  https://doi.org/10.1017/S0025315400041345 CrossRefGoogle Scholar
  16. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466.  https://doi.org/10.1146/annurev.marine.010908.163757 CrossRefPubMedGoogle Scholar
  17. de Heij A, Goud J (2010) Sepiola tridens spec. nov., an overlooked species (Cephalopoda, Sepiolidae) living in the North Sea and north-eastern Atlantic Ocean. Basteria 74(1–3):51–62Google Scholar
  18. de Sales JBL, Shaw PW, Haimovici M, Markaida U, Cunha DB, Ready J, Figueiredo-Ready WMB, Schneider H, Sampaio I (2013) New molecular phylogeny of the squids of the family Loliginidae with emphasis on the genus Doryteuthis Naef, 1912: Mitochondrial and nuclear sequences indicate the presence of cryptic species in the southern Atlantic Ocean. Mol Phylogenet Evol 68:293–299.  https://doi.org/10.1016/j.ympev.2013.03.027 CrossRefPubMedGoogle Scholar
  19. de Sales JBL, da Rodrigues-Filho LFS, do Ferreira YS, Carneiro J, Asp NE, Shaw PW, Haimovici M, Markaida U, Ready J, Schneider H, Sampaio I (2017) Divergence of cryptic species of Doryteuthis plei Blainville, 1823 (Loliginidae, Cephalopoda) in the Western Atlantic Ocean is associated with the formation of the Caribbean Sea. Mol Phylogenet Evol 106:44–54.  https://doi.org/10.1016/j.ympev.2016.09.014 CrossRefPubMedGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  22. Fauvelot C, Bernardi G, Planes S (2003) Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 57:1571–1583.  https://doi.org/10.1111/j.0014-3820.2003.tb00365.x CrossRefPubMedGoogle Scholar
  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791.  https://doi.org/10.2307/2408678 CrossRefPubMedGoogle Scholar
  24. Fernández-Álvarez FA, Martins CPP, Vidal EAG, Villanueva R (2016) Towards the identification of the ommastrephid squid paralarvae (Mollusca: Cephalopoda): morphological description of three species and a key to the north-east Atlantic species. Zool J Linn Soc.  https://doi.org/10.1111/zoj.12496 Google Scholar
  25. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  26. Forsythe JW (2004) Accounting for the effect of temperature on squid growth in nature: from hypothesis to practice. Mar Freshw Res 55:331–339.  https://doi.org/10.1071/MF03146 CrossRefGoogle Scholar
  27. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  28. Gebhardt K, Knebelsberger T (2015) Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences. Helgol Mar Res 69:259–271.  https://doi.org/10.1007/s10152-015-0434-7 CrossRefGoogle Scholar
  29. Gilly WF, Elliger CA, Salinas CA, Camarilla-Coop S, Bazzino G, Beman M (2006) Spawning by jumbo squid Dosidicus gigas in San Pedro Mártir Basin, Gulf of California, Mexico. Mar Ecol Prog Ser 313:125–133.  https://doi.org/10.3354/meps313125 CrossRefGoogle Scholar
  30. González ÁF, Otero J, Guerra Á, Prego R, Rocha FJ, Dale AW (2005) Distribution of common octopus and common squid paralarvae in a wind-driven upwelling area (Ría of Vigo, northwestern Spain). J Plankton Res 27:271–277.  https://doi.org/10.1093/plankt/fbi001 CrossRefGoogle Scholar
  31. González ÁF, Otero J, Pierce GJ, Guerra Á (2010) Age, growth, and mortality of Loligo vulgaris wild paralarvae: implications for understanding of the life cycle and longevity. ICES J Mar Sci 67:1119–1127CrossRefGoogle Scholar
  32. Goodall-Copestake WP, Tarling GA, Murphy EJ (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity (Edinb) 109:50–56.  https://doi.org/10.1038/hdy.2012.12 CrossRefGoogle Scholar
  33. Groenenberg DSJ, Goud J, De Heij A, Gittenberger E (2009) Molecular phylogeny of North Sea Sepiolinae (Cephalopoda: Sepiolidae) reveals an overlooked Sepiola species. J Molluscan Stud 75:361–369.  https://doi.org/10.1093/mollus/eyp032 CrossRefGoogle Scholar
  34. Guerra A, Rocha F (1994) The life history of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in Galician waters (NW Spain). Fish Res 21:43–69.  https://doi.org/10.1016/0165-7836(94)90095-7 CrossRefGoogle Scholar
  35. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174.  https://doi.org/10.1007/BF02101694 CrossRefPubMedGoogle Scholar
  36. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  37. Hastie LC, Nyegaard M, Collins MA, Moreno A, Pereira JMF, Piatkowski U, Pierce GJ (2009) Reproductive biology of the loliginid squid, Alloteuthis subulata, in the north-east Atlantic and adjacent waters. Aquat Living Resour 22:35–44.  https://doi.org/10.1051/alr/2009002 CrossRefGoogle Scholar
  38. Hastie LC, Allcock AL, Jereb P, Lefkaditou E, Moreno A, Oesterwind D, Pierce GJ (2013) Alloteuthis subulata, European common squid. In: Rosa R, O’Dor R, Pierce G (eds) Advances in squid biology, ecology and fisheries. Part I - Myopsid squids. Nova Science Publishers Inc, New YorkGoogle Scholar
  39. Hatfield EM, Hanlon RT, Forsythe JW, Grist EP (2001) Laboratory testing of a growth hypothesis for juvenile squid Loligo pealeii (Cephalopoda: Loliginidae). Can J Fish Aquat Sci 58:845–857.  https://doi.org/10.1139/f01-030 CrossRefGoogle Scholar
  40. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362.  https://doi.org/10.1111/j.1467-2979.2008.00299.x CrossRefGoogle Scholar
  41. Hebert PD, Ratnasingham S, DeWaard JR (2003a) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B Biol Sci 270:S96.  https://doi.org/10.1098/rsbl.2003.0025 CrossRefGoogle Scholar
  42. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003b) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321.  https://doi.org/10.1098/rspb.2002.2218 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jackson GD, Forsythe JW, Hixon RF, Hanlon RT (1997) Age, growth, and maturation of Lolliguncula brevis (Cephalopoda: Loliginidae) in the northwestern Gulf of Mexico with a comparison of length-frequency versus statolith age analysis. Can J Fish Aquat Sci 54:2907–2919.  https://doi.org/10.1139/cjfas-54-12-2907 CrossRefGoogle Scholar
  44. Jereb P, Roper CFE (2010) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date, vol 2. In: Myopsid and oegopsid squid, FAO Species, RomeGoogle Scholar
  45. Jereb P, Allcock AL, Lefkaditou E, Piatkowski U, Hastie LC, Pierce GJ (eds) (2015) Cephalopod biology and fisheries in Europe: II. Species accounts. ICES Cooperative Research Report No. 325, CopenhagenGoogle Scholar
  46. Laptikhovsky V, Salman A, Onsoy B, Katagan T (2002) Systematic position and reproduction of squid of the genus Alloteuthis (Cephalopoda: Loliginidae) in the eastern Mediterranean. J Mar Biol Assoc UK 82:983–985.  https://doi.org/10.1017/S0025315402006483 CrossRefGoogle Scholar
  47. Laptikhovsky V, Salman A, Moustahfid H (2005) Morphological changes at maturation and systematics in the squid genus Alloteuthis. Phuket Mar Biol Cent Res Bull 66:187–193Google Scholar
  48. Lefkaditou E, Tsigenopoulos CS, Alidromiti C, Haralabous J (2012) On the occurrence of Alloteuthis subulata in the Eastern Ionian Sea and its distinction from the sympatric Alloteuthis media. J Biol Res 17:169–175Google Scholar
  49. Lessells CM, Boag PT (1987) Unrepeatable repetabilities: a common mistake. Auk 104:116–121.  https://doi.org/10.2307/4087240 CrossRefGoogle Scholar
  50. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  51. Lobo J, Costa PM, Teixeira MAL, Ferreira MSG, Costa MH, Costa FO (2013) Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol 13:34.  https://doi.org/10.1186/1472-6785-13-34 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Martins RS, Pérez AJ (2006) Occurrence of loliginid paralarvae around Santa Catarina Island, Southern Brazil. Panam J Aquat Sci 1:24–27Google Scholar
  53. Melis R, Vacca L, Cuccu D, Mereu M, Cau A, Follesa MC, Cannas R (2018) Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807:277–296.  https://doi.org/10.1007/s10750-017-3399-5 CrossRefGoogle Scholar
  54. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064.  https://doi.org/10.1520/D0850-11.1 PubMedPubMedCentralGoogle Scholar
  55. Moreno A (1995) Aspectos da biologia de Alloteuthis subulata e distribução de Alloteuthis spp. Relat Cient e Técnicos do Inst Port Investig Marítima 8:16Google Scholar
  56. Moreno A, Pereira J, Arvanitidis C, Robin JP, Koutsoubas D, Perales-Raya C, Cunha MM, Balguerias E, Denis V (2002) Biological variation of Loligo vulgaris (Cephalopoda: Loliginidae) in the eastern Atlantic and Mediterranean. Bull Mar Sci 71:515–534Google Scholar
  57. Moreno A, Azevedo M, Pereira J, Pierce GJ (2007) Growth strategies in the squid Loligo vulgaris from Portuguese waters. Mar Biol Res 3:49–59.  https://doi.org/10.1080/17451000601129115 CrossRefGoogle Scholar
  58. Moreno A, Dos Santos A, Piatkowski U, Santos AMP, Cabral H (2009) Distribution of cephalopod paralarvae in relation to the regional oceanography of the western Iberia. J Plankton Res 31:73–91.  https://doi.org/10.1093/plankt/fbn103 CrossRefGoogle Scholar
  59. Moreno A, Pierce GJ, Azevedo M, Pereira J, Santos AMP (2012) The effect of temperature on growth of early life stages of the common squid Loligo vulgaris. J Mar Biol Assoc UK 92:1619–1628.  https://doi.org/10.1017/S0025315411002141 CrossRefGoogle Scholar
  60. Oesterwind D, ter Hofstede R, Harley B, Brendelberger H, Piatkowski U (2010) Biology and meso-scale distribution patterns of North Sea cephalopods. Fish Res 106:141–150.  https://doi.org/10.1016/j.fishres.2010.06.003 CrossRefGoogle Scholar
  61. Olmos-Pérez L, Roura Á, Pierce GJ, González ÁF (2017) Sepiolid paralarval diversity in a regional upwelling area of the NE Atlantic. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3186-3 Google Scholar
  62. Otero J, Álvarez-Salgado XA, González ÁF, Souto C, Gilcoto M, Guerra Á (2016) Wind-driven upwelling effects on cephalopod paralarvae: Octopus vulgaris and Loliginidae off the Galician coast (NE Atlantic). Prog Oceanogr 141:130–143.  https://doi.org/10.1016/j.pocean.2015.12.008 CrossRefGoogle Scholar
  63. Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genet 5:585–602.  https://doi.org/10.1007/s10592-003-1863-4 CrossRefGoogle Scholar
  64. Pérez-Losada M, Nolte MJ, Crandall KA, Shaw PW (2007) Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol Ecol 16:2667–2679.  https://doi.org/10.1111/j.1365-294X.2007.03333.x CrossRefPubMedGoogle Scholar
  65. Pierce GJ, Thorpe RS, Hastie LC, Brierley AS, Guerra A, Boyle PR, Avila P, Jamieson R, Avila P (1994a) Geographic variation in Loligo forbesi in the Northeast Atlantic Ocean: analysis of morphometric data and test of causal hypothesis. Mar Biol 119:541–547CrossRefGoogle Scholar
  66. Pierce GJ, Hastie LC, Guerra A, Thorpe RS, Howard FG, Boyle PR (1994b) Morphometric variation in Loligo forbesi and Loligo vulgaris: regional, seasonal, sex, maturity and worker differences. Fish Res 21:127–148.  https://doi.org/10.1016/0165-7836(94)90100-7 CrossRefGoogle Scholar
  67. Pierce GJ, Valavanis VD, Guerra A, Jereb P, Orsi-Relini L, Bellido JM, Katara I, Piatkowski U, Pereira J, Balguerias E, Sobrino I, Lefkaditou E, Wang J, Santurtun M, Boyle PR, Hastie LC, MacLeod CD, Smith JM, Viana M, González AF, Zuur AF (2008) A review of cephalopod—environment interactions in European Seas. Hydrobiologia 612:49–70.  https://doi.org/10.1007/s10750-008-9489-7 CrossRefGoogle Scholar
  68. Pierce GJ, Allcock L, Bruno I, Bustamante P, González Á, Guerra Á, Jereb P, Lefkaditou E, Malham S, Moreno A, Pereira J, Piatkowski U, Rasero M, Sánchez P, Santos MB, Santurtún M, Seixas S, Sobrino I, Villanueva R (2010) Cephalopod biology and fisheries in Europe. ICES Cooperative Research Report No. 303Google Scholar
  69. Pineda J, Hare J, Sponaugle S (2007) Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20:22–39.  https://doi.org/10.5670/oceanog.2007.27 CrossRefGoogle Scholar
  70. Ramos-Castillejos JE, Salinas-Zavala CA, Camarillo-Coop S, Enríquez-Paredes LM (2010) Paralarvae of the jumbo squid, Dosidicus gigas. Invertebr Biol 129:172–183.  https://doi.org/10.1111/j.1744-7410.2010.00194.x CrossRefGoogle Scholar
  71. Rocha F, Guerra Á (1999) Age and growth of two sympatric squid Loligo vulgaris and Loligo forbesi, in Galician waters (north-west Spain). J Mar Biol Assoc UK 79:697–707.  https://doi.org/10.1017/S002531549800085X CrossRefGoogle Scholar
  72. Rocha F, Guerra A, Prego R, Piatkowski U (1999) Cephalopod paralarvae and upwelling conditions off Galician waters (NW Spain). J Plankton Res 21:21–33.  https://doi.org/10.1093/plankt/21.1.21 CrossRefGoogle Scholar
  73. Rodhouse PG, Piatkowski U (1995) Fine-scale distribution of juvenile cephalopods in the Scotia Sea and adaptive allometry of the brachial crown. Mar Biol 124:111–117.  https://doi.org/10.1007/BF00349152 CrossRefGoogle Scholar
  74. Rodhouse PG, Swinfen RC, Murray A, Murray AWA (1988) Life cycle, demography and reproductive investment in the myopsid squid Alloteuthis subulata. Mar Ecol Prog Ser 45:245–253.  https://doi.org/10.3354/meps045245 CrossRefGoogle Scholar
  75. Rodhouse PGK, Pierce GJ, Nichols OC, Sauer WHH, Arkhipkin AI, Laptikhovsky VV, Lipiński MR, Ramos JE, Gras M, Kidokoro H, Sadayasu K, Pereira J, Lefkaditou E, Pita C, Gasalla M, Haimovici M, Sakai M, Downey N (2014) Environmental effects on cephalopod population dynamics. In: Vidal E (ed) Advances in marine biology, 1st edn. Elsevier Ltd, Amsterdam, pp 99–233Google Scholar
  76. Roura A (2013) Ecología de paralarvas planctónicas de cefalópodos en áreas de afloramiento costero. Dissertation, Universidade VigoGoogle Scholar
  77. Roura A, Álvarez-Salgado XA, González ÁF, Gregori M, Rosón G, Otero J, Guerra Á (2016) Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): insights from zooplankton community and spatio-temporal analyses. Fish Oceanogr 25:241–258.  https://doi.org/10.1111/fog.12151 CrossRefGoogle Scholar
  78. Sales JBL, Markaida U, Shaw PW, Haimovici M, Ready JS, Figueredo-Ready WMB, Angioletti F, Carneiro MA, Schneider H, Sampaio I (2014) Molecular phylogeny of the genus Lolliguncula steenstrup, 1881 based on nuclear and mitochondrial DNA sequences indicates genetic isolation of populations from North and South Atlantic, and the possible presence of further cryptic species. PLoS ONE.  https://doi.org/10.1371/journal.pone.0088693 Google Scholar
  79. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467.  https://doi.org/10.1073/pnas.74.12.5463 CrossRefPubMedGoogle Scholar
  80. Sauer WH, Lipinski M, Augustyn C (2000) Tag recapture studies of the chokka squid Loligo vulgaris reynaudii d′Orbigny, 1845 on inshore spawning grounds on the south-east coast of South Africa. Fish Res 45:283–289.  https://doi.org/10.1016/S0165-7836(99)00118-6 CrossRefGoogle Scholar
  81. Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8:407–417.  https://doi.org/10.1046/j.1365-294X.1999.00588.x CrossRefGoogle Scholar
  82. Shaw P, Hendrickson L, McKeown N, Stonier T, Naud M, Sauer W (2010) Discrete spawning aggregations of loliginid squid do not represent genetically distinct populations. Mar Ecol Prog Ser 408:117–127.  https://doi.org/10.3354/meps08593 CrossRefGoogle Scholar
  83. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105:13486–13491.  https://doi.org/10.1073/pnas.0803076105 CrossRefPubMedGoogle Scholar
  84. Sotelo G, Morán P, Fernández L, Posada D (2008) Genetic variation of the spiny spider crab Maja brachydactyla in the northeastern Atlantic. Mar Ecol Prog Ser 362:211–223.  https://doi.org/10.3354/meps07433 CrossRefGoogle Scholar
  85. Staaf DJ, Redfern JV, Gilly WF, Watson W, Ballance LT (2013) Distribution of ommastrephid paralarvae in the eastern tropical Pacific. Fish Bull 111:78–89.  https://doi.org/10.7755/FB.111.1.7 Google Scholar
  86. Strugnell J, Nishiguchi MK (2007) Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) inferred from three mitochondrial and six nuclear loci: a comparison of alignment, implied alignment and analysis methods. J Molluscan Stud 73:399–410.  https://doi.org/10.1093/mollus/eym038 CrossRefGoogle Scholar
  87. Sweeney MJ, Roper CFE, Mangold KM, Clarke MR (1992) ‘Larval’ and juvenile cephalopods: a manual for their identification. Smithson Contrib Zool Wash DC 513:282Google Scholar
  88. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  89. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  90. UTPB (2005) La pesquería de calamar (Loligo vulgaris) y puntilla (Alloteuthis spp.) con boliche en las rías baixas gallegas (1999–2003). Los recursos vivos de Galicia. Serie técnica no3Google Scholar
  91. Van Der Vyver JSF, Sauer WHH, McKeown NJ, Yemane D, Shaw PW, Lipiński MR (2016) Phenotypic divergence despite high gene flow in chokka squid Loligo reynaudii (Cephalopoda: Loliginidae): implications for fishery management. J Mar Biol Assoc UK 96:1507–1525.  https://doi.org/10.1017/S0025315415001794 CrossRefGoogle Scholar
  92. Vecchione M, Lipiński MR (1995) Descriptions of the paralarvae of two loliginid squids in southern African waters. S Afr J Mar Sci 15:1–7.  https://doi.org/10.2989/0257761958 CrossRefGoogle Scholar
  93. Vidal ÉAG, Fuentes L, da Silva LB (2010) Defining Octopus vulgaris populations: a comparative study of the morphology and chromatophore pattern of paralarvae from Northeastern and Southwestern Atlantic. Fish Res 106:199–208.  https://doi.org/10.1016/j.fishres.2010.08.009 CrossRefGoogle Scholar
  94. Villanueva R (2000) Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Mar Biol 136:449–460.  https://doi.org/10.1007/s002270050704 CrossRefGoogle Scholar
  95. Villanueva R, Arkhipkin A, Jereb P, Lefkaditou E, Lipiński MR, Perales-Raya C, Riba J, Rocha F (2003) Embryonic life of the loliginid squid Loligo vulgaris: comparison between statoliths of Atlantic and Mediterranean populations. Mar Ecol Prog Ser 253:197–208.  https://doi.org/10.3354/meps253197 CrossRefGoogle Scholar
  96. Villanueva R, Moltschaniwskyj NA, Bozzano A (2007) Abiotic influences on embryo growth: statoliths as experimental tools in the squid early life history. Rev Fish Biol Fish 17:101–110.  https://doi.org/10.1007/s11160-006-9022-x CrossRefGoogle Scholar
  97. Villanueva R, Vidal EAG, Fernández-Álvarez FÁ, Nabhitabhata J (2016) Early mode of life and hatchling size in cephalopod molluscs: influence on the species distributional ranges. PLoS ONE 11:e0165334.  https://doi.org/10.1371/journal.pone.0165334 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wakabayashi T, Suzuki N, Sakai M, Ichii T, Chow S (2006) Identification of ommastrephid squid paralarvae collected in northern Hawaiian waters and phylogenetic implications for the family Ommastrephidae using mtDNA analysis. Fish Sci 72:494–502.  https://doi.org/10.1111/j.1444-2906.2006.01177.x CrossRefGoogle Scholar
  99. Winkelmann I, Campos PF, Strugnell J, Cherel Y, Smith PJ, Kubodera T, Allcock L, Kampmann M, Schroeder H, Guerra A, Norman M, Finn J, Ingrao D, Clarke M, Gilbert MTP (2013) Mitochondrial genome diversity and population structure of the giant squid Architeuthis: genetics sheds new light on one of the most enigmatic marine species. Proc Biol Sci 280:20130273.  https://doi.org/10.1098/rspb.2013.0273 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Young RE, Harman RF (1988) Larva, paralarva and subadult in cephalopod terminology. Malacologia 29:201–207Google Scholar
  101. Zhang AB, He LJ, Crozier RH, Muster C, Zhu CD (2010) Estimating sample sizes for DNA barcoding. Mol Phylogenet Evol 54:1035–1039.  https://doi.org/10.1016/j.ympev.2009.09.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones Marinas (CSIC)VigoSpain
  2. 2.CESAM and Departamento de BiologiaUniversidade de AveiroAveiroPortugal

Personalised recommendations