Marine Biology

, 165:93 | Cite as

A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean

  • José C. XavierEmail author
  • Yves Cherel
  • Louise Allcock
  • Rui Rosa
  • Rushan M. Sabirov
  • Martin E. Blicher
  • Alexey V. Golikov
Review, concept, and synthesis


Cephalopods play an important role in polar marine ecosystems. In this review, we compare the biodiversity, distribution and trophic role of cephalopods in the Arctic and in the Antarctic. Thirty-two species have been reported from the Arctic, 62 if the Pacific Subarctic is included, with only two species distributed across both these Arctic areas. In comparison, 54 species are known from the Antarctic. These polar regions share 15 families and 13 genera of cephalopods, with the giant squid Architeuthis dux the only species confirmed to occur in both the Arctic and Antarctic. Polar cephalopods prey on crustaceans, fish, and other cephalopods (including cannibalism), whereas predators include fish, other cephalopods, seabirds, seals and whales. In terms of differences between the cephalopod predators in the polar regions, more Antarctic seabird species feed on cephalopods than Arctic seabirds species, whereas more Arctic mammal species feed on cephalopods than Antarctic mammal species. Cephalopods from these regions are likely to be more influenced by climate change than those from the rest of the World: Arctic fauna is more subjected to increasing temperatures per se, with these changes leading to increased species ranges and probably abundance. Antarctic species are likely to be influenced by changes in (1) mesoscale oceanography (2) the position of oceanic fronts (3) sea ice extent, and (4) ocean acidification. Polar cephalopods may have the capacity to adapt to changes in their environment, but more studies are required on taxonomy, distribution, ocean acidification and ecology.



We wish to thank Chingiz M. Nigmatullin, Alexander A. Arkhipkin, Pavel A. Lubin, Denis V. Zakharov, Olga L. Zimina, Gudmundur Gudmundsson, Lis L. Jørgensen, Fedor V. Lishchenko, Anastasia V. Lishchenko for valuable comments, providing parts of samples and access to some rare literature. Comments from two anonymous referees further improved the manuscript. We are also grateful to Michael Vecchione and Richard E. Young for help with identification of Mastigoteuthidae. JX is supported by the Investigator FCT program (IF/00616/2013) and is part of the SCAR Ant-ERA, SCAR EGBAMM and ICED programs. RR is also supported by the Investigator FCT program. This study benefited from the strategic program of MARE, financed by FCT (MARE-UID/MAR/04292/2013). AG was partly funded by RFBR (research project № 16-34-00055 мoл_a). MB and partly AG were supported by the Greenlandic contribution to this study: part of the project Initiating North Atlantic Benthos Monitoring (INAMon). INAMon were financially supported by the Greenland Institute of Natural Resources, North Atlantic Cooperation (; J. nr. 510-151), Sustainable Fisheries Greenland, the Ministry for Research in Greenland (IKIIN), and the Environmental Protection Agency (Dancea) of the Ministry of Environment and Food of Denmark (J. nr. mst-112-00272). The work is also part of the Danish Presidency project in Nordic Council of Ministers, Mapping seabed biodiversity and vulnerability in the Arctic and North Atlantic.


This review study was funded partically by Investigator FCT program (IF/00616/2013), FCT (MARE- UID/MAR/04292/2013), by RFBR (research project № 16-34-00055 мoл_a), by the project Initiating North Atlantic Benthos Monitoring (INAMon (; J. nr. 510-151), and by the Environmental Protection Agency (Dancea) of the Ministry of Environment and Food of Denmark (J. nr. mst-112-00272).

Compliance with ethical standards

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors (as it is a review paper).


  1. Adam W (1939) Sur quelques céphalopodes de la mer d’Islande. Bull du Musée Royal d’Histoire Naturelle de Belgique 15:1–13Google Scholar
  2. AHDR (2004) Arctic Human Development Report. Stefansson Arctic Institute, AkureyriGoogle Scholar
  3. Ainley DG, DeMaster DP (1990) The upper trophic levels in polar marine ecosystems. In: Smith WO Jr (ed) Polar oceanography part B chemistry, biology, and geology. Academic Press, San Diego, pp 599–630CrossRefGoogle Scholar
  4. Akimushkin II (1965) Cephalopods of the Seas of the USSR. Israel Program for Scientific Translations, Jerusalem (Translated from Russian)Google Scholar
  5. Aldred RG, Nixon M, Young JZ (1983) Cirrothauma murrayi Chun, a finned octopod. Philos Trans R Soc B 301:1–54CrossRefGoogle Scholar
  6. Allcock AL (2005) On the confusion surrounding Pareledone charcoti (Joubin 1905) (Cephalopoda: Octopodidae): endemic radiation in the Southern Ocean. Zool J Linn Soc Lond 143:75–108CrossRefGoogle Scholar
  7. Allcock AL (2014) Southern Ocean octopuses. In: De Broyer C, Koubbi P, Griffiths H, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Raymond B, Ropert-Coudert Y, van de Putte A (eds) The CAML/SCAR-MarBIN biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 129–133Google Scholar
  8. Allcock L, Barratt I (2014) Brachioteuthis riisei. The IUCN Red List of Threatened Species 2014: eT163095A972086. http://dx doi org/102305/IUCNUK2014-1RLTST163095A972086en. Downloaded on 01 December 2016Google Scholar
  9. Allcock AL, Griffiths H (2014) Bipolarity. In: De Broyer C, Koubbi P, Griffiths H, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Raymond B, Ropert-Coudert Y, van de Putte A (eds) The CAML/SCAR-MarBIN biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 431–436Google Scholar
  10. Allcock AL, Piatkowski U, Rodhouse PGK, Thorpe JP (2001) A study on octopodids from the eastern Weddell Sea, Antarctica. Polar Biol 24:832–838Google Scholar
  11. Allcock AL, Collins MA, Vecchione M (2003a) A redescription of Graneledone verrucosa (Verrill 1881) (Octopoda: Octopodidae). J Mollus Stud 69:135–143CrossRefGoogle Scholar
  12. Allcock AL, Hochberg FG, Rodhouse PG, Thorpe JP (2003b) Adelieledone, a new genus of octopodid from the Southern Ocean. Antarct Sci 15:415–424CrossRefGoogle Scholar
  13. Allcock AL, Hochberg FG, Stranks TN (2003c) Re-evaluation of Graneledone setebos (Cephalopoda: Octopodidae) and placement in the genus Megaleledone. J Mar Biol Assoc UK 83:319–328CrossRefGoogle Scholar
  14. Allcock AL, Collins MA, Piatkowski U, Vecchione M (2004) Thaumeledone and other deep water octopodids from the Southern Ocean. Deep Sea Res II 51:1883–1901CrossRefGoogle Scholar
  15. Allcock AL, Strugnell JM, Ruggiero H, Collins MA (2006) Redescription of the deep-sea octopod Benthoctopus normani (Massy 1907) and a description of a new species from the Northeast Atlantic. Mar Biol Res 2:372–387CrossRefGoogle Scholar
  16. Allcock AL, Strugnell JM, Prodöhl P, Piatkowski U, Vecchione M (2007) A new species of Pareledone (Cephalopoda: Octopodidae) from Antarctic Peninsula waters. Polar Biol 30:883–893CrossRefGoogle Scholar
  17. Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell JM (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res II 58:242–249CrossRefGoogle Scholar
  18. Allison I, Béland M, Alverson K, Bell R, Carlson D, Cutler P, Danell K, Ellis-Evans C, Fahrbach E, Hovelsrund G, Huber J, Kotlyakov V, Krupnik I, López-Martínez J, Mohr T, Odmark H, Quin D, Rachold V, Rapley C, Rogne O, Sarukhanian E, Summerhayes C, Yamanouchi T (2009) The state of polar research. World Meteorological Organization, GenevaGoogle Scholar
  19. AMAP (1998) Assessment report: Arctic Pollution Issues, Arctic Monitoring and Assessment Programme (AMAP), Oslo, NOGoogle Scholar
  20. André J, Haddon M, Pecl GT (2010) Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics. Glob Change Biol 16:2866–2875CrossRefGoogle Scholar
  21. Arkhipkin AI (2004) Diversity in growth and longevity in short-lived animals: squid of the suborder Oegopsina. Mar Freshw Res 55:341–355CrossRefGoogle Scholar
  22. Arkhipkin AI, Bjørke H (1999) Ontogenetic changes in morphometric and reproductive indices of the squid Gonatus fabricii (Oegopsida, Gonatidae) in the Norwegian Sea. Polar Biol 22:357–365CrossRefGoogle Scholar
  23. Arkhipkin AI, Laptikhovsky VV (2008) Discovery of the fourth species of the enigmatic chiroteuthid squid Asperoteuthis (Cephalopoda: Oegopsida) and extension of the range of the genus to the South Atlantic. J Mollus Stud 74:203–207CrossRefGoogle Scholar
  24. Atkinson A, Siegel V, Pakhomov EA, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103PubMedCrossRefGoogle Scholar
  25. Atkinson A, Ward P, Hunt B, Pakhomov E, Hosie G (2012) An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. CCAMLR Sci 19:171–218Google Scholar
  26. Barrett RT, Asheim M, Bakken V (1997) Ecological relationships between two sympatric congeneric species, common murres and thick-billed murres, Uria aalge and U. lomvia, breeding in the Barents Sea. Can J Zool 75:618–631CrossRefGoogle Scholar
  27. Bednaršek N, Tarling GA, Bakker DC, Fielding S, Cohen A, Kuzirian A, McCorkle D, Lézé B, Montagna R (2012) Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification. Glob Change Biol 18:2378–2388CrossRefGoogle Scholar
  28. Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175CrossRefGoogle Scholar
  29. Bergstrøm B (1985) Aspects of natural foraging by Sepietta oweniana. Ophelia 24:65–74CrossRefGoogle Scholar
  30. Bergstrøm B, Summers WC (1983) Sepietta oweniana. In: Boyle PR (ed) Cephalopod life cycles. Species accounts, vol 1. Academic Press, New YorkGoogle Scholar
  31. Bjørke H (1995) Norwegian investigations on Gonatus fabricii. In: ICES Meeting, K:12, Copenhagen, DKGoogle Scholar
  32. Bjørke H (2001) Predators of the squid Gonatus fabricii (Lichtenstein) in the Norwegian Sea. Fish Res 52:113–120CrossRefGoogle Scholar
  33. Bjørke H, Gjøsæter H (1998) Who eats the larger Gonatus fabricii (Lichtenstein) in the Norwegian Sea? In: ICES Meeting, M:10, Copenhagen, DKGoogle Scholar
  34. Bjørke H, Gjøsæter H (2004) Cephalopods in the Norwegian Sea. In: Skjodal HR (ed) The Norwegian sea ecosystem. Tapir Academic Press, TrondheimGoogle Scholar
  35. Blanco C, Aznar J, Raga JA (1995) Cephalopods in the diet of the striped dolphin Stenella coeruleoalba from the western Mediterranean during an epizootic in 1990. J Zool 237:151–158CrossRefGoogle Scholar
  36. Boitsov VD, Karsakov AL, Trofimov AG (2012) Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES J Mar Sci 69:833–840CrossRefGoogle Scholar
  37. Boletzky SV, Boletzky MV (1973) Observations on the embryonic and early post-embryonic development of Rossia macrosoma (Mollusca, Cephalopoda). Helgoländer Meeresun 25:135–161CrossRefGoogle Scholar
  38. Bolstad KS, O’Shea S (2004) Gut contents of a giant squid Architeuthis dux (Cephalopoda: Oegopsida) from New Zealand waters. N Z J Zool 31:15–21CrossRefGoogle Scholar
  39. Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic circumpolar current to recent climate change. Nat Geosci 1:864–869CrossRefGoogle Scholar
  40. Boyle P, Rodhouse PG (2005) Cephalopods ecology and fisheries. Blackell Science, OxfordGoogle Scholar
  41. Braid H (2017) Resolving the taxonomic status of Asperoteuthis lui Salcedo-Vargas, 1999 (Cephalopoda, Chiroteuthidae) using integrative taxonomy. Mar Biodiv 47:621–635CrossRefGoogle Scholar
  42. Briggs JC (1995) Global biogeography. Elsevier, AmsterdamGoogle Scholar
  43. Bruun AF (1945) Cephalopoda. Zool Icel 4:1–45Google Scholar
  44. Bustamante P, Cherel Y, Caurant F, Miramand P (1998) Cadmium, copper and zinc in octoposes from Kerguelen Islands, Southern Indian Ocean. Polar Biol 19:264–271CrossRefGoogle Scholar
  45. Cherel Y (2003) New records of the giant squid Architeuthis dux in the southern Indian Ocean. J Mar Biol Assoc UK 83:1295–1296CrossRefGoogle Scholar
  46. Cherel Y, Duhamel G (2004) Antarctic jaws: cephalopod prey of sharks in Kerguelen waters. Deep Sea Res I 51:17–31CrossRefGoogle Scholar
  47. Cherel Y, Weimerskirch H (1999) Spawning cycle of onychoteuthid squids in the southern Indian Ocean: new information from seabird predators. Mar Ecol Prog Ser 188:93–104CrossRefGoogle Scholar
  48. Cherel Y, Weimerskirch H, Trouve C (2000) Food and feeding ecology of the neritic-slope forager black- browed albatross and its relationships with commercial fisheries in Kerguelen waters. Mar Ecol Prog Ser 207:183–199CrossRefGoogle Scholar
  49. Cherel Y, Weimerskirch H, Trouvé C (2002) Dietary evidence for spatial foraging segregation in sympatric albatrosses [Diomedea spp.] rearing chicks at Iles Nuageuses, Kerguelen. Mar Biol 141:1117–1129CrossRefGoogle Scholar
  50. Cherel Y, Duhamel G, Gasco N (2004) Cephalopod fauna of subantarctic islands: new information from predators. Mar Ecol Prog Ser 266:143–156CrossRefGoogle Scholar
  51. Cherel Y, Gasco N, Duhamel G (2011) Top predators and stable isotopes document the cephalopod fauna and its trophic relationships in Kerguelen waters. In: Duhamel G, Welsford D (eds) The Kerguelen Plateau: marine ecosystem and fisheries. Société Française d’Ichtyologie, Paris, pp 99–108Google Scholar
  52. Choy CA, Portner E, Iwane M, Drazen JC (2013) Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar Ecol Prog Ser 492:169–184CrossRefGoogle Scholar
  53. Clarke M (1966) A review of the systematics and ecology of oceanic squids. Adv Mar Biol 4:91–300CrossRefGoogle Scholar
  54. Clarke MR (1980) Cephalopoda in the diet of sperm whales of the southern hemisphere and their bearing on sperm whale biology. Discov Rep 37:1–324Google Scholar
  55. Clarke MR (1996) Cephalopods as prey. III. Cetaceans. Philos Trans R Soc B 351:1053–1065CrossRefGoogle Scholar
  56. Clarke MR (2006) Oceanic cephalopod distribution and species diversity in the Eastern North Atlantic. Arquipélago Life Mar Sci 23A:27–46Google Scholar
  57. Clarke MR, MacLeod N (1976) Cephalopod remains from sperm whales caught off Iceland. J Mar Biol Assoc UK 56:733–749CrossRefGoogle Scholar
  58. Clarke MR, MacLeod N (1982) Cephalopod remains from the stomachs of sperm whales caught in the Tasman sea. Mem Natl Mus Vic 43:25–42CrossRefGoogle Scholar
  59. Clements JF, Schulenberg TS, Iliff MJ, Roberson D, Fredericks TA, Sullivan BL, Wood CL (2017) The eBird/Clements checklist of birds of the world: v2016. Accessed 15 Mar 2018
  60. Collins MA (2002) Cirrate octopods from Greenland and Iceland waters. J Mar Biol Assoc UK 82:1035–1036CrossRefGoogle Scholar
  61. Collins MA (2005) Opisthoteuthis borealis: a new species of cirrate octopod from Greenland waters. J Mar Biol Assoc UK 85:1475–1479CrossRefGoogle Scholar
  62. Collins MA, Henriques C (2000) A revision of the family Stauroteuthidae (Octopoda: Cirrata) with redescriptions of Stauroteuthis syrtensis and S. gilchristi. J Mar Biol Assoc UK 81:105–117CrossRefGoogle Scholar
  63. Collins MA, Rodhouse PGK (2006) Southern ocean cephalopods. Adv Mar Biol 50:191–265PubMedCrossRefGoogle Scholar
  64. Collins MA, Allcock AL, Belchier M (2004) Cephalopods of the South Georgia slope. J Mar Biol Assoc UK 84:415–419CrossRefGoogle Scholar
  65. Collins MA, Laptikhovsky VV, Strugnell JM (2010) Expanded description of Opisthoteuthis hardyi based on new specimens from the Patagonian slope. J Mar Biol Assoc UK 90:605–611CrossRefGoogle Scholar
  66. Comeau S, Gorsky G, Jeffree R, Teyssié J-L, Gattuso J-P (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882CrossRefGoogle Scholar
  67. Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo K, Barbraud C, Barnes D, Bindoff N, Boyd P, Brandt A, Costa DP, Davidson A, Ducklow H, Emmerson L, Fukuchi M, Gutt J, Hindell MA, Hofmann EE, Hosie G, Iida T, Jacob S, Johnston NM, Kawaguchi S, Koubbi P, Lea M-A, Makhado A, Massom R, Meiners K, Meredith M, Murphy E, Nicol S, Richerson K, Riddle MJ, Rintoul SR, Walker Smith W Jr, Southwell C, Stark JS, Sumner M, Swadling K, Takahashi K, Trathan PN, Welsford D, Weimerskirch H, Westwood K, Wienecke B, Wolf-Gladrow D, Wright S, Xavier JC, Ziegler P (2014) Change in Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Change Biol 20:3004–3025CrossRefGoogle Scholar
  68. Convey P, Aitken S, di Prisco G, Gill MJ, Coulson SJ, Barry T, Jónsdóttir IS, Dang PT, Hik D, Kulkarni T, Lewis G (2012) The impacts of climate change on circumpolar biodiversity. Biodiversity 13:134–143CrossRefGoogle Scholar
  69. Daneri GA, Carlini AR, Rodhouse PGK (2000) Cephalopod diet of the southern elephant seal, Mirounga leonina, at King George Island, South Shetland Islands. Antarct Sci 12:16–19CrossRefGoogle Scholar
  70. Dayton PK, Mordida BJ, Bacon F (1994) Marine communities. Am Zool 34:90–99CrossRefGoogle Scholar
  71. Derjugin KM (1915) Fauna and environment of the Kola Bay. Proc Russ Acad Sci Phys Math Ser 8:1–929 (in Russian) Google Scholar
  72. Dueñas LF, Tracey DM, Crawford AJ, Wilke T, Alderslade P, Sánchez JA (2016) The Antarctic circumpolar current as a diversification trigger for deep-sea octocorals. BMC Evol Biol 16:1–17CrossRefGoogle Scholar
  73. Everson I (2000) Krill: biology, ecology and fisheries. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  74. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366PubMedCrossRefGoogle Scholar
  75. Finley KJ, Evans CR (1983) Summer diet of the Bearded seal (Erignathus barbatus) in the Canadian High Arctic. Arctic 36:82–89Google Scholar
  76. Finley KJ, Gibb EJ (1982) Summer diet of the narwhal (Monodon monoceros) in Pond Inlet, northern Baffin Island. Can J Zool 60:3353–3363CrossRefGoogle Scholar
  77. Förch EC (1998) The marine fauna of New Zealand: Cephalopoda: Oegopsida: Architeuthidae (Giant Squid). NIWA Biodivers Mem 110:1–113Google Scholar
  78. Frandsen RP, Zumholz K (2004) Cephalopods in Greenland waters—a field guide. In: Greenland Institute of Natural Resources, technical report, Greenland, DKGoogle Scholar
  79. Gardiner K, Dick TA (2010a) Arctic cephalopod distributions and their associated predators. Polar Res 29:209–227CrossRefGoogle Scholar
  80. Gardiner K, Dick TA (2010b) A concentration of large forms of five common cephalopods from the Canadian Arctic. Mar Biodivers Rec 3:e37CrossRefGoogle Scholar
  81. Gebruk AV (1994) Two main stages in the evolution of the deep-sea fauna of elasipodid holothurians. In: David B, Guille B, Feґral J-P, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 507–514Google Scholar
  82. Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277PubMedCrossRefGoogle Scholar
  83. Golikov AV, Sabirov RM, Lubin PA (2012) New data on Gonatus fabricii (Cephalopoda, Teuthida) distribution and reproductive biology in the Western Sector of Russian Arctic. Proc Kazan Univ Nat Sci Ser 154:118–128 (in Russian with English summary) Google Scholar
  84. Golikov AV, Morov AR, Sabirov RM, Lubin PA, Jørgensen LL (2013a) Functional morphology of reproductive system of Rossia palpebrosa (Cephalopoda, Sepiolida) in Barents Sea. Proc Kazan Univ Nat Sci Ser 155:116–129 (in Russian with English summary) Google Scholar
  85. Golikov AV, Sabirov RM, Lubin PA, Jørgensen LL (2013b) Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14:28–35CrossRefGoogle Scholar
  86. Golikov AV, Sabirov RM, Lubin PA, Jørgensen LL, Beck I-M (2014) The northernmost record of Sepietta oweniana (Cephalopoda: Sepiolidae) and comments on boreo-subtropical cephalopod species occurrence in the Arctic. Mar Biodivers Rec 7:e58CrossRefGoogle Scholar
  87. Golikov AV, Sabirov RM, Lubin PA (2017) First assessment of biomass and abundance of cephalopods Rossia palpebrosa and Gonatus fabricii in the Barents Sea. J Mar Biol Assoc UK 97:1605–1616CrossRefGoogle Scholar
  88. Grieg JA (1933a) The cephalopod fauna of Svalbard. Tromsø Museums Aarshefter, Naturhistorisk Avd 6(53):1–19Google Scholar
  89. Grieg JA (1933b) Cephalopods from the west Coast of Norway. Bergens Museums Aarbok, Naturvigenskapelig Rekke 4:1–23Google Scholar
  90. Griffiths HJ (2010) Antarctic marine biodiversity: what do we know about the distribution of life in the Southern Ocean? PLoS One 5:e11683PubMedPubMedCentralCrossRefGoogle Scholar
  91. Grimpe G (1921) Teuthologische Mitteilungen VIII. Die Sepiolinen der Nordsee. Zoologischer Anzeiger 53:1–12 (in German) Google Scholar
  92. Grimpe G (1925) Zur kenntnis der cephalopodenfauna der Nordsee. Helgoländer Meeresun 16:1–122 (in German) Google Scholar
  93. Grimpe G (1933) Die cephalopoden des arktischen Gebietes. Fauna Arct 6:489–514 [in German] Google Scholar
  94. Guerra A, Villanueva R, Nesis KN, Bedoya J (1998) Redescription of the deep-sea cirrate octopod Cirroteuthis magna Hoyle 1885, and considerations on the genus Cirroteuthis (Mollusca: Cephalopoda). Bull Mar Sci 63:51–81Google Scholar
  95. Guerra A, Gonzalez AF, Cherel Y (2000) Graneledone gonzalezi sp nov (Mollusca : Cephalopoda): a new octopod from the Iles Kerguelen. Antarct Sci 12:33–40CrossRefGoogle Scholar
  96. Gutt J, Hosie G, Stoddart M (2010) Marine Life in the Antarctic. In: McIntyre AD (ed) Life in the world’s oceans: diversity, distribution, and abundance. Blackwell Publishing Ltd, Oxford, pp 203–220CrossRefGoogle Scholar
  97. Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Hosie G, Isla E, Schloss I, Smith CR, Xavier JC (2015) The Southern Ocean ecosystem under multiple climate change stresses—an integrated circumpolar assessment. Glob Change Biol 21:1434–1453CrossRefGoogle Scholar
  98. Hartwick EB (1983) Octopus dofleini. In: Boyle PR (ed) Cephalopod life cycles. Species accounts, vol 1. Academic Press, New York, pp 277–291Google Scholar
  99. Hassol SJ (2005) Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, New YorkGoogle Scholar
  100. Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13 C and δ15 N analysis. Mar Ecol Prog Ser 84:9–18CrossRefGoogle Scholar
  101. Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, Fabry VJ, Jung S (2014) The ocean. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability Part B: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1655–1731Google Scholar
  102. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  103. Hop H, Gjøsæter H (2013) Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar Biol Res 9:878–894CrossRefGoogle Scholar
  104. Hoving HJT, Haddock SHD (2017) The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna. Sci Rep 7:44952PubMedPubMedCentralCrossRefGoogle Scholar
  105. Hoving HJT, Perez JAA, Bolstad K, Braid H, Evans AB, Fuchs D, Judkins H, Kelly JT, Marian JEAR, Nakajima R, Piatkowski U, Reid A, Vecchione M, Xavier JC (2014) The study of deep-sea cephalopods. Adv Mar Biol 67:235–259PubMedCrossRefGoogle Scholar
  106. IASC (2015) ICARP III: Integrating Arctic Research—a roadmap for the Future. In: Final Report of the 3rd International Conference on Arctic Research Planning ICARP III.
  107. IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  108. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 27Google Scholar
  109. Jereb P, Roper CFE (2005) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. FAO Species Catalogue for Fishery Purposes, FAO, RomeGoogle Scholar
  110. Jereb P, Roper CFE (2010) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. In: Jereb P, Roper CFE (eds) Myopsid and oegopsid squids, vol 4. FAO Species catalogue for Fishery Purposes, FAO, RomeGoogle Scholar
  111. Jereb P, Roper CFE, Norman MD, Finn JK (2014) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Octopods and vampire squids, vol 3. FAO species catalogue for fishery purposes, FAO, RomeGoogle Scholar
  112. Jereb P, Allcock AL, Lefkaditou E, Piatkowski U, Hastie LC, Pierce GJ (2015) Cephalopod biology and fisheries in Europe: II. Species accounts. ICES Cooperative Research Report, CopenhagenGoogle Scholar
  113. Johannesen E, Høines AS, Dolgov AV, Fossheim M (2012) Demersal fish assemblages and spatial diversity patterns in the Arctic–Atlantic transition zone in the Barents Sea. PLoS One 7:e34924PubMedPubMedCentralCrossRefGoogle Scholar
  114. Jonsson G, Dagsson H (1970) Tvaer nyjar smokkfisktegundir (Cephalopoda) vid Island. Natturufroeingurinn 40:125–129 (in Icelandic) Google Scholar
  115. Jorgensen EM (2007) Identification, distribution, and relative abundance of paralarval gonatid squids (Cephalopoda: Oegopsida: Gonatidae) from the Gulf of Alaska, 2001–2003. J Mollus Stud 73:155–165CrossRefGoogle Scholar
  116. Jorgensen EM (2009) Field guide to squids and octopods of the Eastern North Pacific and Bering Sea. NOAA Alaska Fisheries Science Center, SeattleGoogle Scholar
  117. Jorgensen EM, Strugnell JM, Allcock AL (2010) Description and phylogenetic relationships of a new genus of Octopus, Sasakiopus (Cephalopoda: Octopodidae), from the Bering Sea, with a redescription of Sasakiopus salebrosus (Sasaki, 1920). J Mollus Stud 76:57–66CrossRefGoogle Scholar
  118. Kaplan MB, Mooney TA, McCorkle DC, Cohen AL (2013) Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS One 8:e63714PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Change 3:843–847CrossRefGoogle Scholar
  120. Kennicutt MC II, Chown SL, Cassano JJ, Liggett D, Massom R, Peck LS, Rintoul SR, Storey JW, Vaughn DG, Wilson TJ, Sutherland WJ, Allison I, Ayton J, Badhe R, Baeseman J, Barrett PJ, Bell RE, Bertler N, Bo S, Brandt A, Bromwich D, Cary C, Clark MS, Convey P, Costa ES, Cowan D, DeConto R, Dunbar R, Elfring C, Escutia C, Francis J, Fricker HA, Fukuchi M, Gilbert N, Gutt J, Havermans C, Hik D, Hosie G, Jones C, Kim Y, Le Maho Y, Lee S, Leppe M, Leichenkova G, Li X, Lipenkov V, Lochte K, López-Martínez J, Lüdecke C, Lyons WB, Marenssi S, Miller H, Morozova P, Naish T, Nayak S, Ravindra R, Retamales J, Ricci CA, Rogan-Finnemore M, Ropert-Coudert Y, Samah AA, Sanson L, Scambos T, Schloss I, Shiraishia K, Siegert MA, Simões J, Sparrow MD, Storey B, Wall DH, Walsh JC, Wilson G, Winter J-G, Xavier JC, Yang H (2014) Six priorities for Antarctic Science (and supplementary material). Nature 512:23–25PubMedCrossRefGoogle Scholar
  121. Kennicutt MC II, Chown SL, Cassano J, Liggett D, Peck LS, Massom R, Rintoul SR, Storey J, Vaughan DG, Wilson TJ, Allison I, Ayton J, Badhe R, Baeseman J, Barrett PJ, Bell RE, Bertler N, Bo S, Brandt A, Bromwich D, Cary C, Clark MS, Convey P, Costa ES, Cowan D, Deconto R, Dunbar R, Elfring C, Escutia C, Francis J, Fricker HA, Fukuchi M, Gilbert N, Gutt J, Havermans C, Hik D, Hosie G, Jones C, Kim YD, Le Maho Y, Lee SH, Leppe M, Leitchenkov G, Lipenkov XLV, Lochte K, López-Martínez J, Lüdecke C, Lyons W, Marenssi S, Miller H, Morozova P, Naish T, Nayak S, Ravindra R, Retamales J, Ricci CA, Rogan-Finnemore M, Ropert-Coudert Y, Samah AA, Sanson L, Scambos T, Schloss I, Shiraishi K, Siegert MJ, Simões J, Sparrow MD, Storey B, Wall D, Walsh JC, Wilson G, Winther JG, Xavier JC, Yang H, Sutherland WJ (2015) Future directions in Antarctic and Southern Ocean science: 1st SCAR Horizon Scan. Antarct Sci 27:3–18CrossRefGoogle Scholar
  122. Khromov DN (1998) Distribution patterns of Sepiidae. In: Voss NA, Vecchione M, Toll RB, Sweeney MJ (eds) Systematics and biogeography of cephalopods, vol 586. Smithsonian Institution Press, Washington, DC, pp 191–206Google Scholar
  123. Kondakov NN (1937) Cephalopods of the Kara Sea. Proc Polar Inst 50:61–67 (in Russian) Google Scholar
  124. Kondakov NN (1941) Cephalopods of the Far Eastern Seas. Res Far Eastern Seas 1:216–255 (in Russian) Google Scholar
  125. Kondakov NN (1948) Class cephalopoda—cephalopod mollusks. In: Gaevskaya NS (ed) Guide to the fauna and flora of the northern seas of the USSR. Sovetskaya Nauka, Moscow (in Russian) Google Scholar
  126. Kondakov NN, Moskalev LI, Nesis KN (1981) Benthoctopus sibiricus Løyning, an octopod endemic of the eastern Arctic. Ecological investigations of the Shelf. Institute of Oceanology, USSR Academy of Sciences, Moscow, pp 42–56 (in Russian) Google Scholar
  127. Kristensen TK (1977) Hatching, growth and distribution of juvenile Gonatus fabricii (Mollusca: Cephalopoda) in Greenland waters. Astarte 10:21–28Google Scholar
  128. Kristensen TK (1980) Large mature female of Histioteuthis bonnellii (Ferussac, 1835) (Mollusca: Cephalopoda) recorded from the Davis Strait, West Greenland. Steenstrupia 6:73–79Google Scholar
  129. Kristensen TK (1981) The genus Gonatus Gray, 1849 (Mollusca: Cephalopoda) in the North Atlantic. A revision of the North Atlantic species and description of Gonatus steenstrupi n. sp. Steenstrupia 7:61–69Google Scholar
  130. Kristensen TK (1983) Gonatus fabricii. In: Boyle PR (ed) Cephalopod life cycles, vol 1. Academic Press, New York, pp 159–173Google Scholar
  131. Krupnik I, Allison I, Bell R, Cutler P, Hik D, López-Martinez J, Rachold V, Sarukhanian E, Summerhayes C (2011) Understanding earth’s polar challenges: International Polar Year 2007–2008. University of the Arctic, RovaniemiGoogle Scholar
  132. Kubodera T, Jefferts K (1984a) Distribution and abundance of the early life stages of squid, primarily Gonatidae (Cephalopoda, Oegopsida), in the northern North Pacific, Part I. Bull Natl Sci Mus Tokyo Ser A 10:91–106Google Scholar
  133. Kubodera T, Jefferts K (1984b) Distribution and abundance of the early life stages of squid, primarily Gonatidae (Cephalopoda, Oegopsida), in the northern North Pacific, Part II. Bull Natl Sci Mus Tokyo Ser A 10:165–193Google Scholar
  134. Kubodera T, Piatkowski U, Okutani T, Clarke MR (1998) Taxonomy and zoogeography of the family Onychoteuthidae (Cephalopoda: Oegopsida). In: Voss NA, Vecchione MV, Toll RB, Sweeney MJ (eds) Systematics and biogeography of cephalopods, vol II. Smithsonian Institution Press, Washington DC, pp 277–291Google Scholar
  135. Kubodera T, Watanabe H, Ichii T (2007) Feeding habits of the blue shark, Prionace glauca, and salmon shark, Lamna ditropis, in the transition region of the Western North Pacific. Rev Fish Biol Fish 17:111–124CrossRefGoogle Scholar
  136. Kuehl S (1988) A contribution to the reproductive biology and geographical distribution of Antarctic Octopodidae (Cephalopoda). Malacologia 29:89–100Google Scholar
  137. Laidre KL, Heide-Jorgensen MP, Jorgensen OA, Treble MA (2004) Deep-ocean predation by a high Arctic cetacean. ICES J Mar Sci 61:430–440CrossRefGoogle Scholar
  138. Lea MA, Cherel Y, Guinet C, Nichols PD (2002) Antarctic fur seals foraging in the Polar Frontal Zone: inter-annual shifts in diet as shown from fecal and fatty acid analyses. Mar Ecol Prog Ser 245:281–297CrossRefGoogle Scholar
  139. Lipinski MP (2001) Preliminary description of two new species of cephalopods (Cephalopoda: Brachioteuthidae) from South Atlantic and Antarctic waters. Bull Sea Fish Inst 1:3–14Google Scholar
  140. Lipinski M, Woyciechowski M (1981) Cephalopods in the food of Weddell seals from the Admiralty Bay (King George Island, South Shetland Islands). Pol Polar Res 2:163–167Google Scholar
  141. Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake passage. Earth Planet Lett 236:459–470CrossRefGoogle Scholar
  142. Longhurst AR (2007) Ecological geography of the sea. Academic Press, BurlingtonGoogle Scholar
  143. Lordan C, Collins MA, Perales-Raya C (1998) Observations on morphology, age and diet of three Architeuthis caught off the west coast of Ireland in 1995. J Mar Biol Assoc UK 78:903–917CrossRefGoogle Scholar
  144. Loughlin TR, Kiyotaka O (1999) Dynamics of the Bering Sea. University of Alaska Sea Grant, FairbanksCrossRefGoogle Scholar
  145. Lowther AD (2018) Antarctic marine mammals. In: Wursig B, Thewissen JGM, Kocacs KM (eds) Encyclopedia of marine mammals, 3rd edn. Academic Press, New York, pp 27–32CrossRefGoogle Scholar
  146. Løyning P (1930) Benthoctopus sibiricus, a supposed new species of the Cephalopoda from the Siberian Arctic Ocean. Scientific results of the Norwegian North Polar expedition « Maud » 1918–1925. Sci Res 5:1–11Google Scholar
  147. Lu CC, Stranks TN (1994) Synopsis of Pareledone and Megaleledone species, with description of two new species from East Antarctica (Cephalopoda: Octopodidae). Mem Natl Mus Vic 54:221–242CrossRefGoogle Scholar
  148. MacGinitie GE (1955) Distribution and ecology of the marine invertebrates of Point Barrow, Alaska. Smithson Misc Collect 128:1–201Google Scholar
  149. MacGinitie N (1959) Marine mollusca of Point Barrow, Alaska. Proc US Natl Mus 109:59–208CrossRefGoogle Scholar
  150. Manno C, Peck L, Tarling GA (2016) Pteropod eggs released at high pCO2 lack resilience to ocean acidification. Sci Rep 6:25752PubMedPubMedCentralCrossRefGoogle Scholar
  151. Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov Rep 32:33–464Google Scholar
  152. Masson-Delmotte V, Kageyama M, Braconnot P, Charbit S, Krinner G, Ritz C, Guilyardi E, Jouzel J, Abe-Ouchi A, Crucifix M (2006) Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim Dyn 26:513–529CrossRefGoogle Scholar
  153. McBride MM, Dalpadado P, Drinkwater KF, Godø OR, Hobday AJ, Hollowed AB, Kristiansen T, Murphy EJ, Ressler PH, Subbey S, Hofmann EE, Loeng H (2014) Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J Mar Sci 71:1934–1955. CrossRefGoogle Scholar
  154. Mehl S (1991) The Northeast Arctic cod stock’s place in the barents Sea ecosystem in 1980s: an overview. Polar Res 10:525–534Google Scholar
  155. Meltofte H (2013) Arctic biodiversity assessment: status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, AkureyriGoogle Scholar
  156. Meltofte H, Barry T, Berteaux D, Bültmann H, Christiansen JS, Cook JA, Dahlberg A, Daniëls FJA, Ehrich D, Fjeldså J, Friðriksson F, Ganter B, Gaston AJ, Gillespie LJ, Grenoble L, Hoberg EP, Hodkinson ID, Huntington HP, Ims RA, Josefson AB, Kutz SJ, Kuzmin SL, Laidre KL, Lassuy DR, Lewis PN, Lovejoy C, Michel C, Mokievsky V, Mustonen T, Payer DC, Poulin M, Reid DG, Reist JD, Tessler DF, Wrona FJ (2013) Arctic Biodiversity Assessment: synthesis. Conservation of Arctic Flora and Fauna (CAFF), AkureyriGoogle Scholar
  157. Mercer MC (1968) Systematics of the Sepiolid squid Rossia Owen 1835 in Canadian waters with a preliminary review of the genus and notes on biology, [M.Sc. Thesis] Memorial University of Newfoundland, St. Johns, CanadaGoogle Scholar
  158. Mercer MC (1969) A synopsis of recent cephalopoda of Canada. Part 2. Fish Res Board Can Stud 1327:55–65Google Scholar
  159. Mironov AN (2013) Biotic complexes of the Arctic Oceans. Invertebr Zool 10:3–48Google Scholar
  160. Mohr JL, Geiger SR (1968) Arctic Basin faunal precis-animals taken mainly from Arctic drifting stations and their significance for biogeography and water-mass recognition. In: Sater J (ed) Arctic drifting stations. Arctic Institute of North America, MontrealGoogle Scholar
  161. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473PubMedCrossRefGoogle Scholar
  162. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502PubMedCrossRefGoogle Scholar
  163. Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA, Forcada J, Shreeve RS, Atkinson A, Korb R, Whitehouse MJ, Ward P, Rodhouse PG, Enderlein P, Hirst AG, Martin AR, Hill SL, Staniland IJ, Pond DW, Briggs DR, Cunningham NJ, Fleming AH (2007) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B 362:113–148CrossRefGoogle Scholar
  164. Murphy EJ, Cavanagh RD, Drinkwater KF, Grant SM, Heymans J, Hofmann EE, Hunt GL, Johnston NM (2016) Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc R Soc B, pp 20161646Google Scholar
  165. Muus BJ (1959) Skallus, sotaender, blaecksprutter. Danmarks Fauna 65:1–239 (in Danish) Google Scholar
  166. Muus BJ (1962) Cephalopoda. Godthaab Exped Meddr Grønland 81:1–23Google Scholar
  167. Muus BJ (2002) The Bathypolypus-Benthoctopus problem of the North Atlantic (Octopodidae, Cephalopoda). Malacologia 44:175–222Google Scholar
  168. Navarro MO, Kwan GT, Batalov O, Choi CY, Pierce NT, Levin LA (2016) Development of embryonic market squid, Doryteuthis opalescens, under chronic exposure to low environmental pH and O2. PLoS One 11:e0167461PubMedPubMedCentralCrossRefGoogle Scholar
  169. Nekhaev IO (2013) The first record of Alvania punctura from Russian waters (Gastropoda: Rissoidae). Mar Biodivers Rec 6:e2CrossRefGoogle Scholar
  170. Nesis KN (1965) Distribution and feeding of young squids Gonatus fabricii in the Labrador Sea and the Norwegian Sea. Oceanology 5:102–108 (in Russian) Google Scholar
  171. Nesis KN (1971) Squid Gonatus fabricii (Licht.) in the centre of the Arctic Basin. Hydrobiol J 7:93–96 (in Russian) Google Scholar
  172. Nesis KN (1985) Oceanic cephalopods: distribution, life forms, evolution. Nauka, Moscow (in Russian) Google Scholar
  173. Nesis K (1987a) Cephalopods of the world. TFH Publications, Neptune CityGoogle Scholar
  174. Nesis KN (1987b) Cephalopod molluscs of the Arctic Ocean and its seas Fauna and distribution of molluscs: North Pacific and Arctic Basin. USSR Academy of Sciences, Vladivostok (in Russian) Google Scholar
  175. Nesis KN (1994) Warm-water squid and pelagic octopus species in Far East seas. Oceanology 34:410–416 (in Russian) Google Scholar
  176. Nesis KN (1997) Gonatid squids in the sub-Arctic North Pacific: ecology, biogeography, niche diversity and role in the ecosystem. Adv Mar Biol 32:243–324CrossRefGoogle Scholar
  177. Nesis KN (2001) West-Arctic and East-Arctic distributional ranges of cephalopods. Sarsia 86:1–11CrossRefGoogle Scholar
  178. Nesis KN (2003) Distribution of recent cephalopoda and implications for plio-pleistocene events. Berliner Paläobiologische Abhandlungen 3:199–224Google Scholar
  179. Nesis KN, Arkhipkin AI, Nikitina IV, Middleton DAJ, Brickle P (2001) A new subspecies of the bathyal sepiolid cephalopod Neorossia caroli (Joubin, 1902) from the southwestern Atlantic off the Falkland Islands. Ruthenica 11:51–56Google Scholar
  180. Nielsen E (1930) Cephalopoda. Zool Faroes 3:1–9Google Scholar
  181. Nixon M (1983) Teuthowenia megalops. In: Boyle PR (ed) Cephalopod life cycles, vol 1. Academic Press, New York, pp 233–250Google Scholar
  182. NOAA (1988) Data Announcement 88-MGG-02, Digital relief of the surface of the Earth. NOAA, National Geophysical Data Center, BoulderGoogle Scholar
  183. Nordgaard A (1923) The Cephalopoda Dibranchiata observed outside and in the Trondhjemfjord. Meddelelse frå Trondhjems Biologiske Station 16:1–14Google Scholar
  184. O’Shea S (1999) The marine fauna of New Zealand: Octopoda (Mollusca: Cephalopoda). NIWA Research, WellingtonGoogle Scholar
  185. O’Shea S (2004) The giant octopus Haliphron atlanticus (Mollusca: Octopoda) in New Zealand waters. NZ J Zool 31:7–13CrossRefGoogle Scholar
  186. Okutani T, Murata M (1983) A review of the biology of the oceanic squid Onychoteuthis borealijaponica. Mem Natl Mus Vic 44:189–195CrossRefGoogle Scholar
  187. Okutani T, Kubodera T, Jefferts K (1988) Diversity, distribution and ecology of gonatid squids in the subarctic Pacific: a review. Biol Subarct Pac Part 1 26:159–192Google Scholar
  188. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686PubMedCrossRefGoogle Scholar
  189. Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I 42:641–673CrossRefGoogle Scholar
  190. Orsi-Relini L, Massi D (1988) Feeding of Sepietta oweniana (d’Orbigny 1839) along the slope of the Ligurian Sea: a preliminary note. Rapp Comm Int Mer Médit 31:255Google Scholar
  191. Pecl GT, Jackson GD (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev Fish Biol Fish 18:373–385CrossRefGoogle Scholar
  192. Pereyra WT (1965) New records and observations on the flapjack devilfish, Opisthoteuthis californiana Berry. Pac Sci 19:427–441Google Scholar
  193. Piatkowski U, Allcock AL, Hevia M, Steimer S, Vecchione M (1998) Cephalopod ecology: the expedition ANTARKTIS XIV/2 of RV Polarstern in 1996/1997. Berichte zur Polarforschung 274:41–47Google Scholar
  194. Piatkowski U, Allcock L, Vecchione M (2003) Cephalopod diversity and ecology. In: Fütterer DK, Brandt A, Poore GCB (eds) The expeditions Antarktis-XIX/3 and XIX/4 of the Research Vessel POLARSTERN in 2002 (ANDEEP I and II: Antarctic Benthic deep-sea Biodiversity: colonisation history and recent community patterns). Berichte zur Polarforschung, 470, pp 32–38Google Scholar
  195. Pierce GJ, Belcari P, Bustamante P, Challier L, Cherel Y, Gonzales A, Guerra A, Jereb P, Kouéta N, Lefkaditou E, Moreno A, Pereira J, Piatkowski U, Pita C, Robin J-P, Roel B, Santos MB, Santurtún M, Seixas S, Shaw P, Smith J, Stowasser G, Valavanis V, Villanueva R, Wang J, Wangvoralak S, Weis M, Zumholz K (2010) The future of cephalopod populations, fisheries, culture, and research in Europe. ICES Coop Res Rep 303:86–118Google Scholar
  196. Pilling GM, Purves MG, Daw TM, Agnew DA, Xavier JC (2001) The diet of Patagonian toothfish (Dissostichus eleginoides) around South Georgia (South Atlantic). J Fish Biol 59:1370–1384CrossRefGoogle Scholar
  197. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358PubMedCrossRefGoogle Scholar
  198. Ratcliffe N, Trathan PN (2011) A review of the diet and at sea-distribution of penguins breeding within the CCAMLR convention area. CCAMLR Sci 18:75–114Google Scholar
  199. Rau GH, Ainley DG, Bengtson JL, Torres JJ, Hopkins TL (1992) 15N/14N and 13C/12C in Weddell Sea birds, seals, and fish: implications for diet and trophic structure. Mar Ecol Prog Ser 1–8Google Scholar
  200. Raymond B (2014) Pelagic regionalisation. In: De Broyer C, Koubbi P, Griffiths H, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Raymond B, Ropert-Coudert Y, van de Putte A (eds) The CAML/SCAR-MarBIN Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 418–421Google Scholar
  201. Regueira M, Belcari P, Guerra A (2014) What does the giant squid Architeuthis dux eat? Hydrobiologia 725:49–55CrossRefGoogle Scholar
  202. Rigby PR, Sakurai Y (2004) Temperature and feeding related growth efficiency of immature octopuses Enteroctopus dofleini. Suisan Zoshoku 52:29–36Google Scholar
  203. Rigby PR, Sakurai Y (2005) Multidimensional tracking of giant Pacific octopuses in northern Japan reveals unexpected foraging behaviour. Mar Technol Soc J 39:64–67CrossRefGoogle Scholar
  204. Robison B, Seibel B, Drazen J (2014) Deep-sea octopus Graneledone boreopacifica conducts the longest-known egg-brooding period of any animal. PLoS One 9:e103437PubMedPubMedCentralCrossRefGoogle Scholar
  205. Robson GC (1930) Cephalopoda, I: Octopoda. Discov Rep 2:371–402Google Scholar
  206. Rodhouse PG (2013) Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep Sea Res II 95:129–138CrossRefGoogle Scholar
  207. Rodhouse PG, Nigmatullin CM (1996) Role as consumers The role of cephalopods in the world’s oceans. Philos Trans R Soc B 351:1003–1022CrossRefGoogle Scholar
  208. Rodhouse PG, Griffiths H, Xavier JC (2014a) Southern Ocean squid. In: De Broyer C, Koubbi P, Griffiths H, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Raymond B, Ropert-Coudert Y, van de Putte A (eds) The CAML/SCAR-MarBIN Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 284–289Google Scholar
  209. Rodhouse PGK, Pierce GJ, Nichols OC, Sauer WHH, Arkhipkin AI, Laptikhovsky VV, Lipinski ML, Ramos J, Gras M, Kidokoro H, Sadayasu K, Pereira J, Lefkaditou E, Pita C, Gasalla M, Haimovici M, Sakai M, Downey N (2014b) Environmental effects on cephalopod population dynamics: implications for management of fisheries. Adv Mar Biol 67:99–233PubMedCrossRefGoogle Scholar
  210. Rogers AD (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos Trans R Soc B 362:2191–2214CrossRefGoogle Scholar
  211. Roper CFE, Brundage WLJ (1972) Cirrate octopods with associated deep-sea organisms: new biological data based on benthic photographs (Cephalopoda). Smithson Institution Press, Washington, DCGoogle Scholar
  212. Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci USA 105:20776–20780PubMedPubMedCentralCrossRefGoogle Scholar
  213. Rosa R, Trübenbach K, Repolho T, Pimentel M, Faleiro F, Boavida-Portugal JMB, Dionísio G, Leal M, Calado R, Pörtner HO (2013) Lower hypoxia thresholds of cuttlefish life stages living in a warm acidified ocean. Proc R Soc B 280:20131695PubMedPubMedCentralCrossRefGoogle Scholar
  214. Rosa R, Trübenbach K, Pimentel MS, Boavida-Portugal J, Faleiro F, Baptista M, Calado R, Pörtner HO, Repolho T (2014) Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). J Exp Biol 217:518–525PubMedCrossRefGoogle Scholar
  215. Rosa R, Kelly JT, Lopes VM, Paula JR, Gonçalves J, Calado R, Norman MD, Barreiros JP (2017) Deep-sea seven-arm octopus hijacks jellyfish in shallow waters. Mar BiodiversGoogle Scholar
  216. Sabirov RM, Lubin PA, Golikov AV (2009) Finding of the lesser flying squid Todaropsis eblanae (Oegopsida, Ommastrephidae) in the Barents Sea. Zool J 88:1010–1012 (in Russian with English summary) Google Scholar
  217. Sabirov RM, Golikov AV, Nigmatullin CM, Lubin PA (2012) Structure of the reproductive system and hectocotylus in males of lesser flying squid Todaropsis eblanae (Cephalopoda: Ommastrephidae). J Nat Hist 46:1761–1778CrossRefGoogle Scholar
  218. Santos MB, Pierce GJ, Wijnsma G, Ross HM, Reid RJ (1995) Diets of small cetaceans stranded in Scotland, 1993–1995. In: ICES Meeting, N:6, Copenhagen, DKGoogle Scholar
  219. Santos MB, Pierce GJ, Herman J, López A, Guerra A, Mente E, Clarke MR (2001) Feeding ecology of Cuvier’s beaked whale (Ziphius cavirostris): a review with new information on the diet of this species. J Mar Biol Assoc UK 81:687–694CrossRefGoogle Scholar
  220. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60PubMedCrossRefGoogle Scholar
  221. Sasaki M (1929) A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. J Coll Agric Hokkaido Imp Univ 20:1–357Google Scholar
  222. Saunders WB (1984) Nautilus growth and longevity: evidence from marked and recaptured animals. Science 224:990–992PubMedCrossRefGoogle Scholar
  223. Scher HD, Whittaker JM, Williams SE, Latimer JC, Kordesch WE, Delaney ML (2015) Onset of Antarctic Circumpolar current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523:580PubMedCrossRefGoogle Scholar
  224. Screen JA, Francis JA (2016) Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat Clim Change 6:856–860CrossRefGoogle Scholar
  225. Sennikov AM, Muchin SG, Bliznichenko TE (1989) Distribution and trophic importance of juvenile squid (Gonatus fabricii Lichtenstein) in the Norwegian and Barents Seas in 1986–1988. In: ICES Meeting, K:15, Copenhagen, DKGoogle Scholar
  226. Simon MJ, Kristensen TK, Tendal OS, Kinze CC, Tougaard S (2003) Gonatus fabricii (Mollusca, Theuthida) as an important food source for sperm whales (Physeter macrocephalus) in the northeast Atlantic. Sarsia 88:244–246CrossRefGoogle Scholar
  227. Sinclair EH (1991) Review of the biology and distribution of the neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean. NOAA NMFS Tech Rep 105:57–67Google Scholar
  228. Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368PubMedCrossRefGoogle Scholar
  229. Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 1. Mean circumpolar paths. J Geophys Res 114: C11018CrossRefGoogle Scholar
  230. Spaarck R (1923) En pludselig masseforekomst af Sepia-skaller ved Faerøerne i foraaret 1923. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 76:141–146Google Scholar
  231. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdana ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583CrossRefGoogle Scholar
  232. Spalding MD, Agostini VN, Rice J, Grant SM (2012) Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast Manag 60:19–30CrossRefGoogle Scholar
  233. Steenstrup J (1880) Orientering i de ommatostrephartige blacksprutter indbyrdes Forhold. Overs danske Vidensk Selsk Forh 81:73–110 (in Danish) Google Scholar
  234. Stevens DW, Dunn MR, Pinkerton MH, Forman JS (2014) Diet of Antarctic toothfish (Dissostichus mawsoni) from the continental slope and oceanic features of the Ross Sea region, Antarctica. Antarct Sci 26:502–512CrossRefGoogle Scholar
  235. Strugnell JM, Rogers AD, Prodohl PA, Collins MA, Allock AL (2008) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:853–860CrossRefGoogle Scholar
  236. Strugnell JM, Lindgren AR, Allcock AL (2009) Cephalopod mollusks (Cephalopoda). In: Hedges SB, Kumar S (eds) The tree of life. Oxford University Press, Oxford, pp 242–246Google Scholar
  237. Strugnell JM, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibáñez CM, Jorgensen E, Laptikhovsky VV, Linse K, Norman M, Allcock AL (2011) The Southern Ocean: source and sink? Deep Sea Res II 58:196–204CrossRefGoogle Scholar
  238. Strugnell JM, Watts PC, Smith PJ, Allcock AL (2012) Persistent genetic signatures of historic climatic events in an Antarctic octopus. Mol Ecol 21:2775–2787PubMedCrossRefGoogle Scholar
  239. Summers WC, Colvin LJ (1989) On the cultivation of Rossia pacifica. J Cephalopod Biol 1:21–32Google Scholar
  240. Tanner AR, Fuchs D, Winkelmann IE, Gilbert MTP, Pankey MS, Ribeiro ÂM, Kocot KM, Halanych KM, Oakley TH, da Fonseca RR (2017) Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proc R Soc B 284:20162818PubMedPubMedCentralCrossRefGoogle Scholar
  241. Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili J-M, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH (2008) The biology of the polar regions. Oxford University Press, OxfordCrossRefGoogle Scholar
  242. Thurston DK (2008) Oil and gas in the Arctic—past, present and future activities. Abstracts from Challenges for oil and gas development in the Arctic, January 2008. Arctic Frontiers, Session 1, 18, Tromsø, NOGoogle Scholar
  243. Treshnikov AF (1985) Atlas of the Arctic. Main department of geodesy and cartography of the Council of Ministers USSR, Moscow (in Russian)Google Scholar
  244. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (2009) Antarctic climate change and the environment. Scientific Committee for Antarctic Research, CambridgeGoogle Scholar
  245. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson D, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Gutt J, Jacobs S, Kennicutt MC II, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259CrossRefGoogle Scholar
  246. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274CrossRefGoogle Scholar
  247. Vecchione M, Young RE (1997) Aspects of the functional morphology of cirrate octopods: locomotion and feeding. Vie et Milieu 47:101–110Google Scholar
  248. Vecchione M, Piatkowski U, Allcock AL (1998) Biology of the cirrate octopod Grimpoteuthis glacialis (Cephalopoda; Opisthoteuthidae) in the South Shetland Islands, Antarctica. S Afr J Mar Sci 20:421–428CrossRefGoogle Scholar
  249. Vecchione M, Allcock AL, Piatkowski U (2005) Unusual incirrate octopods from the South Shetland Islands, Antarctica, including Bathypurpurata profunda, a newly discovered genus and species of deepwater pygmy octopod (Cephalopoda). Phuket Mar Biol Center Res Bull 66:109–115Google Scholar
  250. Vecchione M, Allcock AL, Piatkowski U, Strugnell JM (2009) Benthoctopus rigbyae, n. sp., a new species of cpehalopod (Octopoda: Incirrata) from near the Antarctic Peninsula. Malacologia 51:13–28CrossRefGoogle Scholar
  251. Verde C, Giordano D, di Prisco G, Andersen Ø (2012) The haemoglobins of polar fish: evolutionary and physiological significance of multiplicity in Arctic fish. Biodiversity 13:228–233CrossRefGoogle Scholar
  252. Verrill AE (1881) The cephalopods of the North-eastern coast of America. Part II. The smaller Cephalopods, including the “Squids” and the Octopi, with other allied forms. Trans Connecticut Acad Sci 5:259–446Google Scholar
  253. Villanueva R, Collins MA, Sanchez P, Voss NA (2002) Systematics, distribution and biology of the cirrate octopods of the genus Opisthoteuthis (Mollusca, Cephalopoda) in the Atlantic Ocean, with description of two new species. Bull Mar Sci 71:933–985Google Scholar
  254. Voight JR (2000) A deep-sea octopus (Graneledone cf. boreopacifica) as a shell-crushing hydrothermal vent predator. J Zool 252:335–341CrossRefGoogle Scholar
  255. Voss GL (1967) The biology and bathymetric distribution of deep-sea cephalopods. Stud Trop Oceanogr 5:511–535Google Scholar
  256. Voss GL (1976) Two new species of octopus of the genus Graneledone (Mollusca: Cephalopoda) from the Southern Ocean. Proc Biol Soc Wash 88:447–458Google Scholar
  257. Voss NA, Nesis KN, Rodhouse PG (1998) Systematics, biology and biogeography of the family Histioteuthidae (Oegopsida). In: Voss NA, Vecchione M, Toll RO, Sweeney MJ (eds) Systematics and biogeography of cephalopods, vol 2. Smithsonian Institute Press, Washington DC, pp 293–373Google Scholar
  258. Vovk AN, Nesis KN, Panfilov BG (1975) Distribution and deep sea cephalopods in the South Atlantic and adjacent waters (mainly analyses of sperm whales feeding). In: Vth Meeting on the Investigation of Molluscs, 11–14 February 1975, Leningrad Academy of Sciences USSR, Institute of Zoology (Russian) (Translation into English: Malacological Review 11(1978): 131): 162–164Google Scholar
  259. Walczowski W, Piechura J (2006) New evidence of warming propagating toward the Arctic Ocean. Geophys Res Lett 33:L12601CrossRefGoogle Scholar
  260. Walsh JE (2008) Climate of the arctic marine environment. Ecol Appl 18:3–22CrossRefGoogle Scholar
  261. Walther GR, Post E, Convey P, Menzel A, Pearmesan C, Beebee TJC, Fromentin JM, Guldberg OH, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  262. Walton D (2013) Antarctica: global science from a frozen continent. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  263. Watanabe H, Kubodera T, Ichii T, Kawahara S (2004) Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Mar Ecol Prog Ser 266:173–184CrossRefGoogle Scholar
  264. Watling L, Guinotte J, Clark MR, Smith CR (2013) A proposed biogeography of the deep ocean floor. Prog Oceanogr 111:91–112CrossRefGoogle Scholar
  265. Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic Canada. Arctic 45:343–357CrossRefGoogle Scholar
  266. Wiborg KF (1984) Norwegian investigations on the squid, Todarodes sagittatus (Lamarck), in 1970–1984. Fisken og Havet 5:1–18Google Scholar
  267. Willassen E (1986) Haliphron atlanticus Steenstrup (Cephalopoda, Octopoda) from the coast of Norway. Sarsia 71:35–40CrossRefGoogle Scholar
  268. Wilson GDF (1998) Historical influences on deep-sea isopod diversity in the Atlantic Ocean. Deep Sea Res II 45:279–301CrossRefGoogle Scholar
  269. Winkelmann I, Campos PF, Strugnell J, Cherel Y, Smith PJ, Kubodera T, Allcock L, Kampmann M-L, Schroeder H, Guerra A (2013) Mitochondrial genome diversity and population structure of the giant squid Architeuthis: genetics sheds new light on one of the most enigmatic marine species. Proc R Soc Lond B Biol Sci 280:20130273CrossRefGoogle Scholar
  270. Wood JB, Kenchington E, O’Dor RK (1998) Reproduction and embryonic development time of Bathypolypus arcticus, a deep-sea octopod (Cephalopoda: Octopoda). Malacologia 39:11–19Google Scholar
  271. Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. British Antarctic Survey, CambridgeGoogle Scholar
  272. Xavier JC, Peck LS (2015) Life beyond the ice. In: Liggett D, Storey B, Cook Y, Meduna V (eds) Exploring the last continent. Springer International Publishing, Cham, pp 229–252CrossRefGoogle Scholar
  273. Xavier JC, Rodhouse PG, Trathan PN, Wood AG (1999) A Geographical Information System (GIS) atlas of cephalopod distribution in the Southern Ocean. Antarct Sci 11:61–62CrossRefGoogle Scholar
  274. Xavier JC, Rodhouse PG, Purves MG, Daw TM, Arata J, Pilling GM (2002) Distribution of cephalopods recorded in the diet of Patagonian toothfish (Dissostichus eleginoides) around South Georgia. Polar Biol 25:323–330Google Scholar
  275. Xavier JC, Croxall JP, Trathan PN, Rodhouse PG (2003) Inter-annual variation in the cephalopod component of the diet of wandering albatrosses Diomedea exulans breeding at Bird Island, South Georgia. Mar Biol 142:611–622CrossRefGoogle Scholar
  276. Xavier JC, Geraint GA, Croxall JP (2006) Determining large scale distribution of pelagic cephalopods, fish and crustaceans in the South Atlantic from wandering albatross (Diomedea exulans) foraging data. Ecography 29:260–272CrossRefGoogle Scholar
  277. Xavier JC, Walker K, Elliot G, Cherel Y, Thompson D (2014) Cephalopod fauna of South Pacific waters: new information from breeding New Zealand wandering albatrosses. Mar Ecol Prog Ser 513:131–142CrossRefGoogle Scholar
  278. Xavier JC, Allcock L, Cherel Y, Lipinski MR, Gomes-Pereira JN, Pierce G, Rodhouse PGK, Rosa R, Shea L, Strugnell J, Vidal E, Villanueva R, Ziegler A (2015) Future challenges in cephalopod research. J Mar Biol Assoc UK 95:999–1015CrossRefGoogle Scholar
  279. Xavier JC, Peck LS, Fretwell P, Turner J (2016a) Climate change and polar range expansions: could cuttlefish cross the Arctic? Mar Biol 163:1–5CrossRefGoogle Scholar
  280. Xavier JC, Raymond B, Jones DC, Griffiths H (2016b) Biogeography of cephalopods in the Southern Ocean using habitat suitability prediction models. Ecosystems 19:220–247CrossRefGoogle Scholar
  281. Yano K, Stevens JD, Compagno LJV (2007) Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus. J Fish Biol 70:374–390CrossRefGoogle Scholar
  282. Yau C, Boyle PR (1996) Ecology of Sepiola atlantica (Mollusca: Cephalopoda) in the shallow sublittoral zone. J Mar Biol Assoc UK 76:733–748CrossRefGoogle Scholar
  283. Yau C, Allcock AL, Daly HI, Collins MA (2002) Distribution of Pareledone spp. (Octopodidae: Eledoninae) around South Georgia. Bull Mar Sci 71:993–1002Google Scholar
  284. Young RE (1973) Evidence for spawning by Gonatus sp. (Cephalopoda: Teuthoidea) in the High Arctic Ocean. Nautilus 87:53–58Google Scholar
  285. Young RE, Vecchione M (2015) Stigmatoteuthis dofleini Pfeffer, 1912. Version 04 November 2015 (under construction) in The Tree of Life Web Project.
  286. Young RE, Vecchione M, Donovan D (1998) The evolution of coleoid cephalopods and their present biodiversity and ecology. S Afr J Mar Sci 20:393–420CrossRefGoogle Scholar
  287. Zakroff C, Mooney TA, Wirth C (2017) Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system. Hydrobiologia 808:83–106CrossRefGoogle Scholar
  288. Zumholz K, Frandsen RP (2006) New information on the life history of cephalopods off west Greenland. Polar Biol 29:169–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José C. Xavier
    • 1
    • 2
    Email author
  • Yves Cherel
    • 3
  • Louise Allcock
    • 4
  • Rui Rosa
    • 5
  • Rushan M. Sabirov
    • 6
  • Martin E. Blicher
    • 7
  • Alexey V. Golikov
    • 6
  1. 1.Departamento das Ciências da VidaMARE-Marine and Environmental Sciences Centre, Universidade de CoimbraCoimbraPortugal
  2. 2.British Antarctic Survey, Natural Environment Research CouncilCambridgeUK
  3. 3.Centre d’Etudes Biologiques de ChizéUPR 7372 du CNRS-Université de La RochelleVilliers-en-BoisFrance
  4. 4.Ryan Institute and School of Natural Sciences, National University of Ireland GalwayGalwayIreland
  5. 5.Laboratório Marítimo da Guia, Marine and Environmental Sciences Centre, Faculdade de Ciências daUniversidade de LisboaCascaisPortugal
  6. 6.Department of ZoologyKazan Federal UniversityKazanRussia
  7. 7.Greenland Climate Research Center, Greenland Institute of Natural ResourcesNuukGreenland

Personalised recommendations